if y=3+√8, find the value of y2+1y2
Answers
Answered by
298
Solution :-
→ y = 3 + √8 => √9 + √8
→ 1/y = 1/(√9 + √8) => 1/(√9 + √8) * {(√9 - √8)/(√9 - √8)} => (√9 - √8) / (9 - 8) => √9 - √8 => 3 - √8
[ using (a+b)(a-b) = a² - b² ] .
So,
→ y + 1/y = (3 + √8) + (3 - √8) => 6
Squaring Both sides ,
→ (y + 1/y)² = 6²
using (a+b)² = a² + b² + 2ab , we get,
→ y² + 1/y² + 2 * y * 1/y = 36
→ y² + 1/y² + 2 = 36
→ y² + 1/y² = 36 - 2 => 34 (Ans.)
amitkumar44481:
Perfect :-)
Answered by
9
Question:-
If y=3+√8, find the value of y² + 1/y²
Formula Used:-
(a + b)(a - b) = a² - b²
(a + b)² = a² + b² + 2ab
Answer:-
Finding 1/y:
y = 3 + √8
=> 1/y = 1/(3 + √8)
Rationalising the denominator
=> 1/y = [1(3 - √8)]/[(3 + √8)(3 - √8)]
=> 1/y = [3 - √8]/[3² - (√8)²]
=> 1/y = (3 - √8)/(9 - 8)
=> 1/y = 3 - √8
Finding y + 1/y:
y + 1/y = 3 + √8 + 3 - √8
=> y + 1/y = 6
Finding y² + 1/y²:
(y + 1/y)² = 6²
=> y² + 1/y² + 2*y*1/y = 36
=> y² + 1/y² = 36 - 2
=> y² + 1/y² = 34
Ans. y² + 1/y² = 34
Similar questions