Math, asked by amancr559, 1 year ago

If y = 3-u\2+u and u = 4x\1-x^2;find dy\dx

Answers

Answered by Sudeshna2421
41

Step-by-step explanation:

Hey here's the answer. ☙☙

Attachments:
Answered by ajajit9217
2

Answer:

\frac{dy}{dx}  =   \frac{-5(1+x^2)}{(1-x^2+{2x}^2)(1-x^2)}

Step-by-step explanation:

Given that y = \frac{3-u}{2+u}

Differentiating both sides with respect to u

=> \frac{dy}{du} = \frac{(2+u)(0-1)- (3-u)(0+1)}{(2+u)^2}

        = \frac{-(2+u)- (3-u)}{(2+u)^2}

        = \frac{-2-u- 3+u}{(2+u)^2}

        =  \frac{-5}{(2+u)^2}              

Also, it is given that u = \frac{4x}{1-x^2}

Differentiating both sides with respect to x

=> \frac{du}{dx} = \frac{(1-x^2)(4) - 4x (0-2x)}{(1-x^2)^2}

        = \frac{4(1-x^2) - 4x (-2x)}{(1-x^2)^2}

        = \frac{4-4x^2 +8x^2}{(1-x^2)^2}

        = \frac{4+4x^2}{(1-x^2)^2}

But, we need to find \frac{dy}{dx}

Therefore,  \frac{dy}{dx} = \frac{dy}{du} *  \frac{du}{dx}

                       =  \frac{-5}{(2+u)^2}  *  \frac{4+4x^2}{(1-x^2)^2}

Substituting the value of u

\frac{dy}{dx} =  \frac{-5}{(2+\frac{4x}{1-x^2})^2}  *  \frac{4+4x^2}{(1-x^2)^2}

    =   \frac{-5(1-x^2)}{(2(1-x^2)+{4x})^2}  *  \frac{4+4x^2}{(1-x^2)^2}

    =   \frac{-5+5x^2}{(2-2x^2+{4x})^2}  *  \frac{4+4x^2}{(1-x^2)^2}

    =   \frac{-5(1-x^2)}{(2-2x^2+{4x})^2}  *  \frac{4+4x^2}{(1-x^2)^2}

    =   \frac{-5}{(2-2x^2+{4x})^2}  * \frac{4+4x^2}{(1-x^2)}

    =   \frac{-5}{2^2(1-x^2+{2x})^2}  * \frac{4(1+x^2)}{(1-x^2)}

    =   \frac{-5}{1-x^2+{2x}^2}  * \frac{1+x^2}{(1-x^2)}

    =   \frac{-5(1+x^2)}{(1-x^2+{2x}^2)(1-x^2)}

Therefore, the value of  \frac{dy}{dx}  =   \frac{-5(1+x^2)}{(1-x^2+{2x}^2)(1-x^2)}

Similar questions