Physics, asked by newdexhues, 2 months ago

if y=√(3x+9) then dy\dx=​

Answers

Answered by TrustedAnswerer19
4

Answer:

Given,

  \:  \:  \:  \:  \bf \: y =  \sqrt{(3x + 9)}  \\  \implies \: \bf  \frac{dy}{dx}  =  \frac{d \:  \sqrt{(3x + 9)} }{dx}  \\  \bf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{1}{2 \sqrt{3x + 9} }  \times  \frac{ d \: (3x +9)}{dx}  \\ \bf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{2 \sqrt{3x + 9} }  \times ( \frac{d \: 3x}{dx}  +  \frac{d \: 9}{dx} ) \\ \bf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{2 \sqrt{3x + 9} }  \times (3 + 0) \\ \bf    \:  \:  \:  \:  \:  \:  \: \therefore \:  \frac{dy}{dx}  =  \frac{3}{2 \sqrt{3x + 9} }

Note :

 \green \odot \:  \sf \:  \frac{d \:  \sqrt{x} }{dx}  =  \frac{1}{2 \sqrt{x} }  \\  \green \odot \:  \sf \:  \frac{d \:( constant)}{dx}  = 0 \\  \green \odot \:  \sf \:  \frac{d \: (u + v)}{dx}  =  \frac{d \: u}{dx}  +  \frac{d \: v}{dx}  \\  \green \odot \:  \sf \:  \frac{d \:  {x}^{n} }{dx}  = n {x}^{n - 1}


Anonymous: Good!
Similar questions