Math, asked by aishun52, 1 month ago

If y = 3x² then find area under y - x curve inbetween x = 1 to x = 2
a) 6 unit b) 7 unit c) 8 unit d) 9 unit​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Givemn curve is

\rm :\longmapsto\:y =  {3x}^{2}

We know,

Its represents a upper parabola having vertex (0, 0).

So, Required area between the curve with respect to x - axis is

\rm \:  =  \:  \: \displaystyle\int_{1}^2 \rm y \: dx

\rm \:  =  \:  \: \displaystyle\int_{1}^2 \rm  {3x}^{2}  \: dx

\rm \:  =  \: 3 \: \displaystyle\int_{1}^2 \rm  {x}^{2}  \: dx

We know that,

\underbrace{\boxed{ \tt{\displaystyle\int \rm \:  {x}^{n}dx =  \frac{ {x}^{n + 1} }{n + 1} + c }}}

So, using this,

\rm \:  =  \: 3 \:  \bigg(\dfrac{ {x}^{2 + 1} }{2 + 1} \bigg) _{1}^2

\rm \:  =  \: 3 \:  \bigg(\dfrac{ {x}^{3} }{3} \bigg) _{1}^2

\rm \:  =  \:  \:  \bigg( {x}^{3} \bigg) _{1}^2

\rm \:  =  \:  \:  {2}^{3}  -  {1}^{3}

\rm \:  =  \:  \: 8 - 1

\rm \:  =  \:  \: 7 \: sq. \: units

Additional Information:-

\underbrace{\boxed{ \tt{\displaystyle\int_{a}^b \rm f(x)dx \:  =  \: \displaystyle\int_{a}^b \rm f(y)dy }}}

\underbrace{\boxed{ \tt{\displaystyle\int_{a}^b \rm f(x)dx \:  =   - \: \displaystyle\int_{b}^a \rm f(x)dx }}}

\underbrace{\boxed{ \tt{\displaystyle\int_{a}^b \rm f(x)dx \:  =  \: \displaystyle\int_{a}^b \rm f(a + b - x)dx }}}

\underbrace{\boxed{ \tt{\displaystyle\int_{0}^b \rm f(x)dx \:  =  \: \displaystyle\int_{0}^b \rm f(b - x)dx }}}

\underbrace{\boxed{ \tt{\displaystyle\int_{ - b}^b \rm f(x)dx \:  = 2 \: \displaystyle\int_{0}^b \rm f(x)dx  \: if \: f( - x) = f(x)}}}

\underbrace{\boxed{ \tt{\displaystyle\int_{ - b}^b \rm f(x)dx \:  = 0\: if \: f( - x) =  - f(x)}}}

Attachments:
Similar questions