Math, asked by MeetVsV, 2 months ago

if y= 5 cosx -3 sinx,prove that y2 + y= 0

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

\rm :\longmapsto\:y = 5cosx - 3sinx

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:y_2 + y = 0

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y = 5cosx - 3sinx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}( 5cosx - 3sinx)

We know,

\boxed{ \rm{ \dfrac{d}{dx}y = y_1}}

So, using this we get

\rm :\longmapsto\:y_1 = \dfrac{d}{dx}5cosx - \dfrac{d}{dx}3sinx

\rm :\longmapsto\:y_1 =5 \dfrac{d}{dx}cosx - 3\dfrac{d}{dx}sinx

We know that,

\boxed{ \rm{ \dfrac{d}{dx}sinx = cosx}}

and

\boxed{ \rm{ \dfrac{d}{dx}cosx =  -  \: sinx}}

So, using this, we get

\red{\rm :\longmapsto\:y_1 =  - 5sinx - 3cosx}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y_1 = \dfrac{d}{dx}( - 5sinx - 3cosx)

We know that

\boxed{ \rm{ \dfrac{d}{dx}y_1 = y_2}}

So, using this we get

\rm :\longmapsto\:y_2 = \dfrac{d}{dx}( - 5sinx) - \dfrac{d}{dx}3cosx

\rm :\longmapsto\:y_2 =  - 5\dfrac{d}{dx}sinx -3 \dfrac{d}{dx}cosx

\rm :\longmapsto\:y_2 =  - 5cosx + 3sinx

\rm :\longmapsto\:y_2 =  - (5cosx  -  3sinx)

\rm :\longmapsto\:y_2 =  - y

\red{\bigg \{ \because \: y = 5cosx - 3sinx\bigg \}}

\rm :\longmapsto\:y_2 + y = 0

Hence, proved

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx}tanx =  {sec}^{2}x}}

\boxed{ \rm{ \dfrac{d}{dx}cotx =  { - cosec}^{2}x}}

\boxed{ \rm{ \dfrac{d}{dx}cosecx =  -  \: cosecx \: cotx}}

\boxed{ \rm{ \dfrac{d}{dx}secx \:  =  \: secx \: tanx}}

\boxed{ \rm{ \dfrac{d}{dx}logx =  \frac{1}{x}}}

\boxed{ \rm{ \dfrac{d}{dx} \sqrt{x}  =  \frac{1}{2 \sqrt{x} }}}

\boxed{ \rm{ \dfrac{d}{dx} {e}^{x} =  {e}^{x}}}

\boxed{ \rm{ \dfrac{d}{dx} {a}^{x} =  {a}^{x} \: loga}}

Similar questions