Math, asked by anonymous6077, 2 months ago

If y=50/[(x-5) ^2+5]^2
Find the maximum value of y.​

Attachments:

Answers

Answered by Swarup1998
3

Given: \mathsf{y=\dfrac{50}{[(x-5)^{2}+5]^{2}}}

To find: maximum value of \mathsf{y}

Step-by-step explanation:

The given term is \mathsf{y=\dfrac{50}{[(x-5)^{2}+5]^{2}}}

In order to maximize \mathsf{y}, the numerator of \mathsf{y} must be minimum.

And this is obtained by taking \mathsf{(x-5)=0}, i.e., when \mathsf{x=5}, we get the maximum value of \mathsf{y}.

Now putting \mathsf{x=5}, we get

\quad \mathsf{y=\dfrac{50}{[(5-5)^{2}+5]^{2}}}

\mathsf{\Rightarrow y=\dfrac{50}{[0^{2}+5]^{2}}}

\mathsf{\Rightarrow y=\dfrac{50}{[0+5]^{2}}}

\mathsf{\Rightarrow y=\dfrac{50}{5^{2}}}

\mathsf{\Rightarrow y=\dfrac{50}{25}}

\mathsf{\Rightarrow y=2}

Answer: Option (2) \mathsf{2} is correct

The maximum value of \mathsf{y} is \mathsf{2}.

Answered by MaheswariS
2

\textbf{Given:}

\mathsf{y=\dfrac{50}{[(x-5)^2+5]^2}}

\textbf{To find:}

\textsf{Maximum value of y}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{y=\dfrac{50}{[(x-5)^2+5]^2}}

\textsf{clearly, y is maximum when}\;\mathsf{(x-5)^2+5\;is\;minimum}

\mathsf{Let\;z=(x-5)^2+5}

\mathsf{z=x^2-10x+30}

\mathsf{\dfrac{dz}{dx}=2x-10}

\mathsf{\dfrac{d^2z}{dx^2}=2}

\mathsf{\dfrac{dz}{dx}=0\implies\;2x-10=0}

\implies\mathsf{x=5}

\mathsf{when\;x=5,\;\dfrac{d^2z}{dx^2}\;>\;0}

\therefore\textsf{z attains minimum at x=5}

\textsf{Hence, y attains maximum at x=5}

\underline{\mathsf{Maximum\;value\;of\;y:}}

\mathsf{=\dfrac{50}{[(5-5)^2+5]^2}}

\mathsf{=\dfrac{50}{[0^2+5]^2}}

\mathsf{=\dfrac{50}{25}}

\mathsf{=2}

\textbf{Answer:}

\mathsf{Option\;(2)\;is\;correct}

\textbf{Find more:}

Similar questions