Math, asked by josinjobi, 11 months ago

if y= 5tanx, find dy/dx at x=3.14​

Attachments:

Answers

Answered by priyankmrunal
0

Answer:

y=5^{tan x},

Multiply both sides by log, [since 5 has the power of tan x over it, after multiplying by log the power comes down]

㏑y=㏑(5^{tanx})

㏑y=tanx.㏑5

Now, Differentiate it w.r.t x,

\frac{d(lny)}{dx\\}=\frac{d(tanxln(5))}{dx}

\frac{1}{y}\frac{dy}{dx}=㏑5.sec^{2}x

\frac{dy}{dx}=y(sec^{2}x.㏑5)

\frac{dy}{dx}=5^{tanx}(sec^{2}x.㏑5)

At x=\frac{\pi }{4},

\frac{dy}{dx}=5^{tan\frac{\pi }{4}  }(sec^{2}\frac{\pi }{4}.㏑5)

\frac{dy}{dx}=5(2×1.61)  [tan\frac{\pi }{4}=1,sec^{2}\frac{\pi }{4}=2,㏑5≅1.61]

\frac{dy}{dx}=16.1[approximately 16]

⇒Trick:

\frac{d[a^{b}] }{dx}=a^{b}.㏑a.\frac{d[b]}{dx}

Similar questions