if y=(6x-7)^4 find dy/dx
Answers
EXPLANATION.
⇒ y = (6x - 7)⁴.
As we know that,
Differentiate w.r.t x, we get.
⇒ dy/dx = d(6x - 7)⁴/dx.
⇒ dy/dx = 4 x (6x - 7)³ x d(6x)/dx.
⇒ dy/dx = 4 x (6x - 7)³ x (6).
⇒ dy/dx = 24(6x - 7)³.
MORE INFORMATION.
(1) = d(sin x)/dx = cos x.
(2) = d(cos x)/dx = - sin x.
(3) = d(tan x)/dx = sec²x.
(4) = d(cot x)/dx = - cosec²x.
(5) = d(sec x)/dx = sec x tan x.
(6) = d(cosec x)/dx = - cosec x cot x.
(7) = d(constant)/dx = 0.
(8) = d(ax)/dx = a.
(9) = d(xⁿ)/dx = nxⁿ⁻¹.
(10) = d(eˣ)/dx = eˣ.
(11) = d(aˣ)/dx = aˣ㏒a.
(12) = d(㏒x)/dx = 1/x.
★ ANSWER ★
((6*x-7)^4)'
4*(6*x-7)^(4-1)*(6*x-7)'
4*(6*x-7)^(4-1)*((6*x)'+(-7)')
4*(6*x-7)^(4-1)*(6*(x)'+(6)'*x+(-7)')
4*(6*x-7)^(4-1)*(6*(x)'+0*x+(-7)')
4*(6*x-7)^(4-1)*(0*x+6*1+(-7)')
4*(6*x-7)^(4-1)*(0+6)
4*(6*x-7)^(4-1)*6
24*(6*x-7)^3
The calculation above is a derivative of the function f (x).
᯽BE BRAINLY᯽