Math, asked by salman655, 2 months ago

If y = 6x² + 4x + log x, then d²y/dx² will be *

Answers

Answered by mathdude500
5

\large\underline{\sf{Given- }}

\rm :\longmapsto\:y =  {6x}^{2} + 4x + logx

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} }

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  {6x}^{2} + 4x + logx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =\dfrac{d}{dx} ({6x}^{2} + 4x + logx)

We know,

 \boxed{ \bf{ \: \dfrac{d}{dx} (u + v) = \dfrac{d}{dx} u + \dfrac{d}{dx} v}}

and

 \boxed{ \bf{ \: \dfrac{d}{dx} k \: f(x) \:  =  \: k \: \dfrac{d}{dx} f(x) \: }}

Using these result, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =6\dfrac{d}{dx}{x}^{2} + 4\dfrac{d}{dx} x + \dfrac{d}{dx} logx

Now, we know that

 \boxed{ \bf{ \: \dfrac{d}{dx}  {x}^{n}  =  {nx}^{n - 1}}}

and

 \boxed{ \bf{ \: \dfrac{d}{dx} logx =  \frac{1}{x}}}

So, using this result, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 6(2x) + 4(1) + \dfrac{1}{x}

\rm :\longmapsto\:\dfrac{dy}{dx} = 12x + 4 + \dfrac{1}{x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} \dfrac{dy}{dx} = \dfrac{d}{dx}  \bigg(12x + 4 + \dfrac{1}{x} \bigg)

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{ {dx}^{2} } = 12\dfrac{d}{dx} x + \dfrac{d}{dx} 4 + \dfrac{d}{dx}  {x}^{ - 1}

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{ {dx}^{2} } = 12(1) + 0 + ( - 1) {x}^{ - 1 - 1}

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{ {dx}^{2} } = 12-  {x}^{ - 2}

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{ {dx}^{2} } = 12-  \dfrac{1}{ {x}^{2} }

Additional Information :-

 \boxed{ \bf{ \: \dfrac{d}{dx} x = 1}}

 \boxed{ \bf{ \: \dfrac{d}{dx} k = 0}}

 \boxed{ \bf{ \: \dfrac{d}{dx}  \sqrt{x}  =  \frac{1}{2 \sqrt{x} } }}

 \boxed{ \bf{ \: \dfrac{d}{dx} logx =  \frac{1}{x}}}

 \boxed{ \bf{ \: \dfrac{d}{dx} sinx = cosx}}

 \boxed{ \bf{ \: \dfrac{d}{dx} cosx = -  \:  sinx}}

 \boxed{ \bf{ \: \dfrac{d}{dx} tanx =  {sec}^{2}x}}

 \boxed{ \bf{ \: \dfrac{d}{dx} cotx =  -  \:  {cosec}^{2}x}}

 \boxed{ \bf{ \: \dfrac{d}{dx} secx =  \: secx \: tanx}}

 \boxed{ \bf{ \: \dfrac{d}{dx} cosecx =   - \: cosecx \: cotx}}

Similar questions