Math, asked by abhibhargav81, 1 year ago

if y= √√7+7+√8+2√7 -√7 find value of y

Answers

Answered by SeekNDstry8318
2

We see that,

y=√√7+7+√8+2√7−√7

Here,

8+2√7=7+1+2√7=(√7+1)2

On solving for y , we get

y=√√7+7+√(√7+1)2−√7

y=√√7+7+(√7+1)−√7

y=√2√7+7+1−√7

Using identity, we get

y=√(√7+1)2−√7

y=(√7+1)−√7

∴y=1

Answered by pulakmath007
1

The value of y = 1

Correct question : If \displaystyle \sf{y =  \sqrt{ \sqrt{7}  + 7 +  \sqrt{8 + 2 \sqrt{7} } }   -  \sqrt{7}  } find the value of y

Given :

\displaystyle \sf{y =  \sqrt{ \sqrt{7}  + 7 +  \sqrt{8 + 2 \sqrt{7} } }   -  \sqrt{7}  }

To find :

The value of y

Solution :

Step 1 of 3 :

Write down the given equation

Here the given equation is

\displaystyle \sf{y =  \sqrt{ \sqrt{7}  + 7 +  \sqrt{8 + 2 \sqrt{7} } }   -  \sqrt{7}  }

Step 2 of 3 :

Find the square root of 8 + 2√7

\displaystyle \sf{  8 + 2 \sqrt{7} }

\displaystyle \sf{  =  {( \sqrt{7} )}^{2}   +  {1}^{2}  + 2 \times  \sqrt{7}  \times 1}

\displaystyle \sf{  =  {( \sqrt{7}  + 1)}^{2}  }

\displaystyle \sf{  \therefore \:  \:  \sqrt{8 + 2 \sqrt{7} }  =  \sqrt{7}   + 1} \:  \:  \: (taking \: positive \: sign)

Step 3 of 3 :

Find the value of y

\displaystyle \sf{y =  \sqrt{ \sqrt{7}  + 7 +  \sqrt{8 + 2 \sqrt{7} } }   -  \sqrt{7}  }

\displaystyle \sf{ \implies y =  \sqrt{ \sqrt{7}  + 7 + ( \sqrt{7}  + 1)}   -  \sqrt{7}  }

\displaystyle \sf{ \implies y =  \sqrt{8 + 2 \sqrt{7}}   -  \sqrt{7}  }

\displaystyle \sf{ \implies y =   \sqrt{7} + 1   -  \sqrt{7}  }

\displaystyle \sf{ \implies y = 1}

Hence the value of y = 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of (√5+√2)²

https://brainly.in/question/3299659

2. Simplify ( 8+√5)(8-√5).

https://brainly.in/question/17061574

#SPJ3

Similar questions