Math, asked by sheetaldixit, 10 months ago

If y = (7x+6 tan x)x5, then find dy/dx.


yrr Bata do ​

Answers

Answered by chetanverma167
4

Step-by-step explanation:

hope it helpss you!! if you understand Don't forget to like it!!

Attachments:
Answered by pulakmath007
1

\displaystyle \bf  \frac{dy}{dx}  =  6  {x}^{5} (7  +  {sec}^{2} x) + 30{x}^{4} tanx

Given :

\displaystyle \sf  y = (7x + 6 \: tanx) {x}^{5}

To find :

\displaystyle \sf   \frac{dy}{dx}

Solution :

Step 1 of 2 :

Write down the given equation

Here the given equation is

\displaystyle \sf  y = (7x + 6 \: tanx) {x}^{5}

Step 2 of 2 :

\displaystyle \sf Find  \: value  \: of  \: \frac{dy}{dx}

\displaystyle \sf  y = (7x + 6 \: tanx) {x}^{5}

\displaystyle \sf{ \implies }y = 7 {x}^{6}  + 6  {x}^{5} \: tanx

Differentiating both sides with respect to x we get

\displaystyle \sf   \frac{dy}{dx}  =  \frac{d}{dx}  \bigg(7 {x}^{6}  + 6  {x}^{5} \: tanx\bigg)

\displaystyle \sf{ \implies }\frac{dy}{dx}  =  \frac{d}{dx}  \bigg(7 {x}^{6} \bigg) + \frac{d}{dx}  \bigg( 6  {x}^{5} \: tanx\bigg)

\displaystyle \sf{ \implies }\frac{dy}{dx}  =  7 \times 6 \times  {x}^{6 - 1}   +6 \bigg[ {x}^{5}  \frac{d}{dx}  \bigg(  \: tanx\bigg) + tanx\frac{d}{dx}  \bigg(  {x}^{5} \bigg)\bigg]

\displaystyle \sf{ \implies }\frac{dy}{dx}  =  42  {x}^{5}   +6 {x}^{5}  {sec}^{2} x + 30 {x}^{4} tanx

\displaystyle \sf{ \implies } \frac{dy}{dx}  =  6  {x}^{5} (7  +  {sec}^{2} x) + 30{x}^{4} tanx

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

#SPJ3

Similar questions