Math, asked by 324004, 11 months ago

If y= a+b/ x where a, b are real number y= 1 and x=-1 and y =5 when x=-5 then a ,b =. (A)-1. (B)0. (C)11. (D)10

Answers

Answered by shadowsabers03
0

Question:-

If \displaystyle\sf{y=a+\dfrac{b} {x} } for \displaystyle\sf{a, \ b\in\mathbb{R} } such that \displaystyle\sf{x=-1\implies y=1} and \displaystyle\sf{x=-5\implies y=5} then find \displaystyle\sf{a+b.}

Answer:-

\displaystyle\large\boxed{\sf{a+b=11} }

Solution:-

Here,

\displaystyle\longrightarrow\sf{y=a+\dfrac{b} {x} }

For \displaystyle\sf{x=-1,}

\displaystyle\longrightarrow\sf{y=1}

\displaystyle\longrightarrow\sf{a+\dfrac{b} {-1} =1}

\displaystyle\longrightarrow\sf{a-b=1\quad\quad\dots(1)}

And for \displaystyle\sf{x=-5,}

\displaystyle\longrightarrow\sf{y=5}

\displaystyle\longrightarrow\sf{a+\dfrac{b} {-5} =5}

\displaystyle\longrightarrow\sf{\dfrac{5a-b} {5} =5}

\displaystyle\longrightarrow\sf{5a-b=25}

\displaystyle\longrightarrow\sf{5(a-b) +4b=25}

From (1),

\displaystyle\longrightarrow\sf{5+4b=25}

\displaystyle\longrightarrow\sf{b=5}

Then, again from (1),

\displaystyle\longrightarrow\sf{a=6}

Finally,

\displaystyle\longrightarrow\sf{\underline{\underline{a+b=11}}}

Similar questions