If y=a cos (logx)+b sin (logx)
prove that x²y∨2+xy∨1+y=0
vikaskumar0507:
can you explain y ^ 2 and y ^ 1 ?
Answers
Answered by
41
y = a cos (log x) + b sin (log x)
x²y = ax² cos (logx) + b x² sin (log x)
xy = ax cos (log x) + bx sin (log x)
Differentiating y two time we get:
dy/dx = -a sin (log x) . 1/x + b cos (log x) . 1/x
= 1/x [ -a sin (log x) + b cos (log x)
d² y/ dx² = a/x² sin (logx) - a/x² cos (log x) - b/x² sin (log x) - b/x² cos (log x)
= a/x² [ sin (logx) - cos (logx)] - b/x² [sin logx + cos logx]
x² d²y/dx² = a [ sin (logx) - cos (logx)] - b [sin logx + cos logx]
x²y d²y/dx² = a² sin (logx) cos logx - a² cos² (logx) - ab y cos logx + ab sin² logx
- ab cos logx sin logx - b²y sin logx
xy dy/dx = -a² sin logx cos logx + ab cos² logx -ab sin² logx + b² sin logx cos logx
Add the terms in the above two and y, you get answer
x²y = ax² cos (logx) + b x² sin (log x)
xy = ax cos (log x) + bx sin (log x)
Differentiating y two time we get:
dy/dx = -a sin (log x) . 1/x + b cos (log x) . 1/x
= 1/x [ -a sin (log x) + b cos (log x)
d² y/ dx² = a/x² sin (logx) - a/x² cos (log x) - b/x² sin (log x) - b/x² cos (log x)
= a/x² [ sin (logx) - cos (logx)] - b/x² [sin logx + cos logx]
x² d²y/dx² = a [ sin (logx) - cos (logx)] - b [sin logx + cos logx]
x²y d²y/dx² = a² sin (logx) cos logx - a² cos² (logx) - ab y cos logx + ab sin² logx
- ab cos logx sin logx - b²y sin logx
xy dy/dx = -a² sin logx cos logx + ab cos² logx -ab sin² logx + b² sin logx cos logx
Add the terms in the above two and y, you get answer
Similar questions