If y=Ae^mx +Be^nx show that d^2 y/dx^2 -(m+n)dy/dx+mny
Answers
Answered by
8
Given, 
we have to proof :
y = Ae^{mx} + Be^{nx} ---------6(1)
differentiate y with respect to x,
dy/dx = A. d(e^{mx})/dx + B. d(e^{nx})/dx
= A.m.e^{mx} + B.n.e^{nx} -----(2)
differentiate dy/dx with respect to x once again.
d²y/dx² = A.m. d(e^{mx})/dx + B.n. d(e^{nx})/dx
= A.m².e^{mx} + B.n².e^{nx} -------(3)
now, LHS =
from equations (2) and (3),
= (A.m².e^{mx} + B.n².e^{nx}) - (m + n)(A.m.e^{mx} + B.n.e^{nx}) + mny
= (A.m².e^{mx} + B.n².e^{nx}) - (A.m².e^{mx}+Amn.e^{mx} + B.n².e^{nx} + B.mn.e^{nx}) + mny
= -mn(A.e^{mx} + B.e^{nx}) + mny
= -mny + mny [ from equations (1),
= 0 = RHS
we have to proof :
y = Ae^{mx} + Be^{nx} ---------6(1)
differentiate y with respect to x,
dy/dx = A. d(e^{mx})/dx + B. d(e^{nx})/dx
= A.m.e^{mx} + B.n.e^{nx} -----(2)
differentiate dy/dx with respect to x once again.
d²y/dx² = A.m. d(e^{mx})/dx + B.n. d(e^{nx})/dx
= A.m².e^{mx} + B.n².e^{nx} -------(3)
now, LHS =
from equations (2) and (3),
= (A.m².e^{mx} + B.n².e^{nx}) - (m + n)(A.m.e^{mx} + B.n.e^{nx}) + mny
= (A.m².e^{mx} + B.n².e^{nx}) - (A.m².e^{mx}+Amn.e^{mx} + B.n².e^{nx} + B.mn.e^{nx}) + mny
= -mn(A.e^{mx} + B.e^{nx}) + mny
= -mny + mny [ from equations (1),
= 0 = RHS
Similar questions