Math, asked by ctsangwan, 8 hours ago

if y=cos(1/x²)then dy/dx is​

Answers

Answered by Anonymous
6

Given :

y = cos(1/x²)

  • Apply chain rule here

 \sf \dfrac{dy}{dx} = \dfrac{dcos( \dfrac{1}{x^{2} })}{d(\dfrac{1}{x^{2}})} \: . \: \dfrac{d( \dfrac{1}{x^{2}})}{dx}\\ \\

  • Differentiate with help of quotient rule

\sf \dfrac{dy}{dx} =  - sin \dfrac{1}{x^{2}}  \: . \: \left[\dfrac{x^{2} . \dfrac{d1}{dx }{ - 1. \dfrac{dx^{2}}{dx}}}{(x^{2})^{2}  } \right]\\ \\

  • As we know that differentiation some basic functions
  • cos x = (-sin x)
  • constant term = 0
  • x^n = na^n-1

\sf \dfrac{dy}{dx} =  - sin \dfrac{1}{x^{2}}  \: . \: \left[\dfrac{x^{2} .0 - 2x}{(x^{2})^{2}  } \right]\\ \\

  • After applying simplify it

\sf \dfrac{dy}{dx} =  - sin \dfrac{1}{x^{2}}  \: . \: \left[\dfrac{ - 2x}{x^{4}}\right]\\ \\

\sf \dfrac{dy}{dx} =  sin \dfrac{ 2x}{x^{6}} \\ \\

  • Cancel numerator of x with denominator of x⁶.

\sf \dfrac{dy}{dx} =   sin \dfrac{ 2}{x^{5}}

Similar questions