if y=cos^2t and x=sin2t then d2y/dx2 at t= π/6
Answers
Given,
Differentiating wrt t we get,
Given,
Differentiating wrt t,
Then,
And,
At
Step-by-step explanation:
Given,
\displaystyle\small\text{$\longrightarrow y=\cos^2t$}⟶y=cos
2
t
Differentiating wrt t we get,
\displaystyle\small\text{$\longrightarrow\dfrac{dy}{dt}=-\sin(2t)$}⟶
dt
dy
=−sin(2t)
Given,
\displaystyle\small\text{$\longrightarrow x=\sin(2t)$}⟶x=sin(2t)
Differentiating wrt t,
\displaystyle\small\text{$\longrightarrow\dfrac{dx}{dt}=2\cos(2t)$}⟶
dt
dx
=2cos(2t)
Then,
\displaystyle\small\text{$\longrightarrow\dfrac{dy}{dx}=\dfrac{\left(\dfrac{dy}{dt}\right)}{\left(\dfrac{dx}{dt}\right)}$}⟶
dx
dy
=
(
dt
dx
)
(
dt
dy
)
\displaystyle\small\text{$\longrightarrow\dfrac{dy}{dx}=-\dfrac{1}{2}\tan(2t)$}⟶
dx
dy
=−
2
1
tan(2t)
And,
\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}\left(\dfrac{dy}{dx}\right)$}⟶
dx
2
d
2
y
=
dx
d
(
dx
dy
)
\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{d\left(\dfrac{dy}{dx}\right)}{dx}$}⟶
dx
2
d
2
y
=
dx
d(
dx
dy
)
\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{\dfrac{d}{dt}\left(\dfrac{dy}{dx}\right)}{\dfrac{dx}{dt}}$}⟶
dx
2
d
2
y
=
dt
dx
dt
d
(
dx
dy
)
\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{\dfrac{d}{dt}\left(-\dfrac{1}{2}\tan(2t)\right)}{2\cos(2t)}$}⟶
dx
2
d
2
y
=
2cos(2t)
dt
d
(−
2
1
tan(2t))
\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=-\dfrac{1}{2}\sec^3(2t)$}⟶
dx
2
d
2
y
=−
2
1
sec
3
(2t)
At \small\text{$t=\dfrac{\pi}{6},$}t=
6
π
,
\displaystyle\small\text{$\longrightarrow\underline{\underline{\dfrac{d^2y}{dx^2}=-4}}$}⟶
dx
2
d
2
y
=−4