Math, asked by arshika4151, 2 months ago

if y=cos^2t and x=sin2t then d2y/dx2 at t= π/6​

Answers

Answered by shadowsabers03
4

Given,

\displaystyle\small\text{$\longrightarrow y=\cos^2t$}

Differentiating wrt t we get,

\displaystyle\small\text{$\longrightarrow\dfrac{dy}{dt}=-\sin(2t)$}

Given,

\displaystyle\small\text{$\longrightarrow x=\sin(2t)$}

Differentiating wrt t,

\displaystyle\small\text{$\longrightarrow\dfrac{dx}{dt}=2\cos(2t)$}

Then,

\displaystyle\small\text{$\longrightarrow\dfrac{dy}{dx}=\dfrac{\left(\dfrac{dy}{dt}\right)}{\left(\dfrac{dx}{dt}\right)}$}

\displaystyle\small\text{$\longrightarrow\dfrac{dy}{dx}=-\dfrac{1}{2}\tan(2t)$}

And,

\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}\left(\dfrac{dy}{dx}\right)$}

\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{d\left(\dfrac{dy}{dx}\right)}{dx}$}

\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{\dfrac{d}{dt}\left(\dfrac{dy}{dx}\right)}{\dfrac{dx}{dt}}$}

\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{\dfrac{d}{dt}\left(-\dfrac{1}{2}\tan(2t)\right)}{2\cos(2t)}$}

\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=-\dfrac{1}{2}\sec^3(2t)$}

At \small\text{$t=\dfrac{\pi}{6},$}

\displaystyle\small\text{$\longrightarrow\underline{\underline{\dfrac{d^2y}{dx^2}=-4}}$}

Answered by simranraj9650
0

Step-by-step explanation:

Given,

\displaystyle\small\text{$\longrightarrow y=\cos^2t$}⟶y=cos

2

t

Differentiating wrt t we get,

\displaystyle\small\text{$\longrightarrow\dfrac{dy}{dt}=-\sin(2t)$}⟶

dt

dy

=−sin(2t)

Given,

\displaystyle\small\text{$\longrightarrow x=\sin(2t)$}⟶x=sin(2t)

Differentiating wrt t,

\displaystyle\small\text{$\longrightarrow\dfrac{dx}{dt}=2\cos(2t)$}⟶

dt

dx

=2cos(2t)

Then,

\displaystyle\small\text{$\longrightarrow\dfrac{dy}{dx}=\dfrac{\left(\dfrac{dy}{dt}\right)}{\left(\dfrac{dx}{dt}\right)}$}⟶

dx

dy

=

(

dt

dx

)

(

dt

dy

)

\displaystyle\small\text{$\longrightarrow\dfrac{dy}{dx}=-\dfrac{1}{2}\tan(2t)$}⟶

dx

dy

=−

2

1

tan(2t)

And,

\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}\left(\dfrac{dy}{dx}\right)$}⟶

dx

2

d

2

y

=

dx

d

(

dx

dy

)

\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{d\left(\dfrac{dy}{dx}\right)}{dx}$}⟶

dx

2

d

2

y

=

dx

d(

dx

dy

)

\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{\dfrac{d}{dt}\left(\dfrac{dy}{dx}\right)}{\dfrac{dx}{dt}}$}⟶

dx

2

d

2

y

=

dt

dx

dt

d

(

dx

dy

)

\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{\dfrac{d}{dt}\left(-\dfrac{1}{2}\tan(2t)\right)}{2\cos(2t)}$}⟶

dx

2

d

2

y

=

2cos(2t)

dt

d

(−

2

1

tan(2t))

\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=-\dfrac{1}{2}\sec^3(2t)$}⟶

dx

2

d

2

y

=−

2

1

sec

3

(2t)

At \small\text{$t=\dfrac{\pi}{6},$}t=

6

π

,

\displaystyle\small\text{$\longrightarrow\underline{\underline{\dfrac{d^2y}{dx^2}=-4}}$}⟶

dx

2

d

2

y

=−4

Similar questions