if y= cos inverse x [cosx+sin x] find dy/dx
Answers
Answered by
0
Heya!!
Before Differentiation let's make this function an easier one.
Cos x + Sin x =
√2 { Cos 45 × Cos x + Sin 45 × Sin x }
=>
√2 { Cos ( 45 - x ) }
=>
√2 { Cos ( x - 45 ) }
Becoz Cos (-Theta ) = Cos ( Theta )
=>
y = Cos-¹ { √2 Cos ( x - 45 ) }
Now, put √2 Cos ( x - 45 ) = z
dz/dx = -√2 Sin ( x - 45 ) ... equation ( i )
y = Cos-¹ ( z )
dy/dz = -1/ √ ( 1 - z² ) .... equation (ii )
Now, Multiple both the equations.
dy/dx =
√2 Sin ( x - 45 )
_________________
√ ( 1- 2 Cos² ( x - 45 )
dy/dx =
√2 Sin ( x - 45 )
___________________
√ ( 1 - 2 Cos² ( x - 45 )
Before Differentiation let's make this function an easier one.
Cos x + Sin x =
√2 { Cos 45 × Cos x + Sin 45 × Sin x }
=>
√2 { Cos ( 45 - x ) }
=>
√2 { Cos ( x - 45 ) }
Becoz Cos (-Theta ) = Cos ( Theta )
=>
y = Cos-¹ { √2 Cos ( x - 45 ) }
Now, put √2 Cos ( x - 45 ) = z
dz/dx = -√2 Sin ( x - 45 ) ... equation ( i )
y = Cos-¹ ( z )
dy/dz = -1/ √ ( 1 - z² ) .... equation (ii )
Now, Multiple both the equations.
dy/dx =
√2 Sin ( x - 45 )
_________________
√ ( 1- 2 Cos² ( x - 45 )
dy/dx =
√2 Sin ( x - 45 )
___________________
√ ( 1 - 2 Cos² ( x - 45 )
Similar questions