Math, asked by chavanjay23042003, 2 months ago

If y = (cos x) ^logx,​ find dy/dx

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y =  {( \cos(x) )}^{ log(x) }

Taking log both sides,

 log(y)  =  log(x) . log( \cos(x) )

Differentiating both sides w.r.t x, we have,

 \implies \frac{1}{y} . \frac{dy}{dx} =  log( \cos(x) ). \frac{d}{dx}( log(x)   ) +  log(x). \frac{d}{dx} ( log( \cos(x) )  ) \\

  \implies\frac{1}{y} . \frac{dy}{dx} =  log( \cos(x) ). \frac{1}{x}  +  log(x). \frac{ -  \sin(x) }{ \cos(x) }  \\

 \implies \frac{dy}{dx}  = y. [ \frac{ log( \cos(x) ) }{x}  -  \tan(x)  log(x)  ]  \\

 \implies \frac{dy}{dx}  =  (\cos(x) )^{ log(x) } . [ \frac{ log( \cos(x) ) }{x}  -  \tan(x)  log(x)  ]  \\

Similar questions