Math, asked by vaibhavirevankar23, 20 hours ago

If y = cos⁴ 0, x = sin⁴ 0, then find dy/dx​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \rm{y =cos^{4} ( \theta) \:  \:  \:  \:  , \:  \:  \:  \: x =  sin^{4} ( \theta) }

Differentiating both sides w.r.t θ,

 \rm{ \dfrac{dy }{d \theta}= - 4 \: cos^{3} ( \theta)  \: sin( \theta)  \:  \:  \:  \:  , \:  \:  \:  \:  \dfrac{dx}{d \theta} =  4 \: sin^{3} ( \theta)  \:  cos( \theta) }

On dividing, we get,

 \rm{ \dfrac{dy }{dx}=  \dfrac{- 4 \: cos^{3} ( \theta)  \: sin( \theta) }{  4 \: sin^{3} ( \theta)  \:  cos( \theta)} }

 \rm{ \implies \dfrac{dy }{dx}=   - \dfrac{cos^{2} ( \theta)   }{   sin^{2} ( \theta)  } }

 \rm{ \implies \dfrac{dy }{dx}=   -cot^{2} ( \theta)   }

Similar questions