If y = cot-1 (cosx)1/2 - tan-1(cosx)1/2 , prove that sin y = tan 2 (x/2)
Answers
Answer:
Step-by-step explanation:
y=cot−1(cosx−−−−√)−tan−1(cosx−−−−√) =tan−1(1cosx√)−tan−1(cosx−−−−√) =tan−1(1cosx√−cosx√1+1cosx√×cosx√) =tan−1(1−cosx2cosx√)⇒tany=1−cosx2cosx√⇒cot y=2cosx√1−cosxWe know thatcosec2y=1+cot2y =1+(2cosx√1−cosx)2 =(1−cosx)2+4 cosx(1−cosx)2 =(1+cosx)2(1−cosx)2⇒cosec y=1+cosx1−cosx =1+2cos2(x2)−11−1+2sin2(x2) =cos2(x2)sin2(x2)y=cot-1cosx-tan-1cosx =tan-11cosx-tan-1cosx =tan-11cosx-cosx1+1cosx×cosx =tan-11-cosx2cosx⇒tany=1-cosx2cosx⇒cot y=2cosx1-cosxWe know thatcosec2y=1+cot2y =1+2cosx1-cosx2 =1-cosx2+4 cosx1-cosx2 =1+cosx21-cosx2⇒cosec y=1+cosx1-cosx =1+2cos2x2-11-1+2sin2x2 =cos2x2sin2x2
=cot =cot2x/2
⇒cosec y=cot⇒cosec y=cot2x/2
⇒1sin y=1tan2(x2)⇒sin y=tan 2(x/2)