If y = e* sin^2x , find yn
x ,i. e. the nth derivative of y
Answers
Answered by
0
Answer:
Let’s do it in the pattern recognition method. The main mechanism behind this is sinx=cos(π2−x) and sin(2x)=2sinxcosx .
y1=ddxsin2(x)
Let u=sin(x)
Then by the chain rule :
y1=dduu2.ddxsinx
y1=2sinxcosx
y1=sin(2x)
Then let’s go for the second derivative :
y2=ddxsin(2x)
Then by the chain rule :
Let v=2x
y2=ddvsinvddx2x
y2=2cos(2x)
y2=2sin(π2−2x)
Then for the third derivative :
y3=ddx2sin(π2−2)
Then again, by the chain rule :
Let w=π2−2x
y3=2ddwsinwddx(π2−2x)
y3=−22cos(π2−2x)
y3=22cos(2x−π2)
y3=22sin(2π2−2x)
Then for the fourth derivative too :
y4=ddx22sin(2π2−2x)
Then again using the chain rule :
Let t=2π2−2x
y4=22ddtsintddx2π2−2x
y4=−23cos(2π2−2x)
y4=23cos(2x−2π2
y4=23sin[π2−(2x−2π2)]
y4=23sin(3π2−2x)
Thus, the pattern is very clear, the n-th derivative will be :
yn=2(n−1)sin((n−1)π2−2x)
That is it!
With regards.
Similar questions