Math, asked by sandeshjsonawane004, 8 months ago

If y=e sin(cosec-1x )then dy upon dx​

Answers

Answered by abhi178
15

Given : The function is y=e^{sin(cosec^{-1}x)}

To find : first derivative of given function i.e., dy/dx

solution : y=e^{sin(cosec^{-1}x)}

differentiating with respect to x,

⇒dy/dx = \frac{d(e^{sin(cosec^{-1}x)})}{dx}

= e^{sin(cosec^{-1}x)}\times\frac{d(sin(cosec^{-1}x))}{dx}

= e^{sin(cosec^{-1}x)} \times cos(cosec^{-1}x)\times\frac{d(cosec^{-1}x}{dx}

= e^{sin(cosec^{-1}x)} \times cos(cosec^{-1}x)\times\frac{-1}{x\sqrt{x^2-1}}

=-e^{sin(cosec^{-1}x)} \times cos(cosec^{-1}x)\times\frac{1}{x\sqrt{x^2-1}}

but sin(cosec¯¹x) = 1/x

so, e^{sin(cosec^{-1}x)}=\sqrt[x]{e}

cos(cosec¯¹x) = √(x² - 1)/x

Then -e^{sin(cosec^{-1}x)} \times cos(cosec^{-1}x)\times\frac{1}{x\sqrt{x^2-1}}=-\sqrt[x]{e}\times\frac{\sqrt{x^2-1}}{x}\times\frac{1}{x\sqrt{x^2-1}}

= -\frac{\sqrt[x]{e}}{x^2}

Therefore the first derivative of function y is -\frac{\sqrt[x]{e}}{x^2}

Answered by sara200408
3

Answer: Let's make it simple

sin(cosec^-1x)=1/x

y=e^(1/x)

dy/dx= -e^(1/x)/x² { on complete first order differentiation}

Hope it helps

best luck buddy

Similar questions