Math, asked by prathm2407, 9 months ago

IF
y = e^x (sinx + cos x) Find dy
dx​

Answers

Answered by saindhu07
1

Answer:

2 e^{x} cos x

Step-by-step explanation:

y = e^{x}(sin x + cos x)\\\\

Using the formula :-

\frac{duv}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}

Here u = e^{x} and v=(sin x + cos x)

e^{x} \frac{d(sin x + cos x)}{x} + (sin x + cos x)\frac{d(e^{x} )}{x}

= e^{x} (cos x -sin x) + (sin x + cos x) e^{x}

(Because of differentiation of cos x = - sin x and differentiation of sin x = cos x )

=  e^{x} \\cos x - e^{x} sin x + e^{x}sin x + e^{x} cos x

= 2e^{x}cos x

Similar questions