Math, asked by shivanshbhatt0p9zujb, 11 months ago

If y=e^x sinx show that d^2y/dx^2 = 2e^x cosx

Answers

Answered by mademonikalyani
1

Step-by-step explanation:

i hope this is the answer you are searching for

Attachments:
Answered by BendingReality
15

Answer:

\displaystyle \sf \longrightarrow \frac{d^2y}{dx^2}=2.e^x.\cos x \ [ \ Shown \ ]  \\

Step-by-step explanation:

Given :

\displaystyle \sf y=e^{x} \sin x \\ \\

We have to show :

\displaystyle \sf \frac{d^2y}{dx^2} =2 \ e^x \cos x \\ \\

We know :

\displaystyle \sf \frac{d}{dx} (e^x)=e^x \\ \\

\displaystyle \sf \frac{d}{dx} (\sin x)=\cos x \\ \\

\displaystyle \sf \frac{d}{dx} (\cos x)=\sin x \\ \\

Diff. given function w.r.t. x :

\displaystyle \sf \frac{dy}{dx}= y'=\frac{d}{dx}\left(e^{x}. \sin x \right)  \\ \\

Using product rule :

\displaystyle \sf \frac{d}{dx}\left(f(x).g(x) \right)=g(x).f'(x)+f(x).g'(x) \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dx}=\frac{d}{dx}\left(e^{x}. \sin x \right)  \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dx}= e^{x}. (\sin x)'+\sin x.(e^{x})' \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dx}= e^{x}.\cos x+e^{x} .\sin x \\ \\

Now finding second order derivative :

\displaystyle \sf \longrightarrow \frac{d^2y}{dx^2}= \frac{d}{dx} (e^{x}.\cos x+e^{x} .\sin x) \\ \\

\displaystyle \sf \longrightarrow \frac{d^2y}{dx^2}= \frac{d}{dx} (e^{x}.\cos x)+\frac{d}{dx} (e^{x} .\sin x) \\ \\

Again using product rule :

\displaystyle \sf \longrightarrow \frac{d^2y}{dx^2}=e^{x}.(\cos x)'+\cos x.(e^x)'+ e^{x} .(\sin x)'+\sin x.(e^x)' \\ \\

\displaystyle \sf \longrightarrow \frac{d^2y}{dx^2}=e^{x}.(-\sin x)+\cos x.e^x+ e^{x} .(\cos x)+\sin x.e^x \\ \\

\displaystyle \sf \longrightarrow \frac{d^2y}{dx^2}=e^x.\cos x+ e^{x} .\cos x \\ \\

\displaystyle \sf \longrightarrow \frac{d^2y}{dx^2}=2.e^x.\cos x \\ \\

Hence shown.

Similar questions