if y equal to 2 plus root 3 find the value of y plus 1/y and y square plus 1 /y square
Answers
Given :-
y = 2 + √3
Have To Find Out :-
Value of (y + 1/y) & (y² + 1/y²)
Using Property :-
a² + 1/a² = (a + 1/a)² - 2
Explanation :-
=> y + 1/y
=> (2 + √3) + 1/(2 + √3)
=> {(2 + √3)² + 1 } / (2 + √3)
=> {4 + 3 + 4√3 + 1}/ (2 + √3)
=> (8 + 4√3) / (2 + √3)
=> 4(2 + √3) / (2 + √3)
=> 4
y + 1/y = 4
Now ,
y² + 1/y² = (y + 1/y)² - 2
= (4)² - 2
= 16 - 2
= 14
Result :-
(1) (y + 1/y) = 4
(2) (y² + 1/y²) = 14
Given:
y = 2 + √3
To Find:
The value of (y + 1/y) & (y² + 1/y²)
Solution:
By using the identity,
a² + 1/a² = (a + 1/a)² - 2.
Firstly, y + 1/y,
putting value of y in the above expression,
= (2 + √3) + 1/(2 + √3)
= {(2 + √3)² + 1 } / (2 + √3)
= {4 + 3 + 4√3 + 1}/ (2 + √3)
= (8 + 4√3) / (2 + √3)
= 4(2 + √3) / (2 + √3)
= 4
So, y + 1/y = 4
Now ,
y² + 1/y²
= (y + 1/y)² - 2
= (4)² - 2
= 16 - 2
= 14
So, (y² + 1/y²) = 14
Hence, the value of (y + 1/y) is 4 and the value of (y² + 1/y²) is 14.