Physics, asked by hiralalsaha16, 8 months ago

if Y equal to sin square x cos square x then find DY by DX​

Answers

Answered by Anonymous
4

Answer:

 \boxed{\mathfrak{ \dfrac{d}{dx} ( {sin}^{2} x \:  {cos}^{2}  x) = 2sinx \: cosx \: ( {cos}^{2} x -  {sin}^{2} x)}}

Given:

 \rm y =  {sin}^{2} x \:  {cos}^{2} x

Explanation:

 \rm Possible  \: derivation: \\  \rm \implies \dfrac{d}{dx} ( {sin}^{2} x \:  {cos}^{2}  x) \\  \\  \rm Using  \: the \:  product  \: rule,  \\  \rm  \dfrac{d}{dx} (u v) = v( \frac{d}{dx}u) + u ( \frac{d}{dx} v) \\  \\  \rm \implies {sin}^{2} x( \dfrac{d}{dx}  {cos}^{2} x) + {cos}^{2} x( \dfrac{d}{dx}  {sin}^{2} x)  \\  \\  \rm Using  \: the  \: chain \:  rule :  \\  \\   \rm \implies {sin}^{2} x( \dfrac{d}{dx}  {cos}^{2} x \times  \dfrac{d \: cosx}{d \: cos \: x} ) + {cos}^{2} x( \dfrac{d}{dx}  {sin}^{2} x\times  \dfrac{d \: sinx}{d \: sin \: x}) \\  \\ \rm \implies {sin}^{2} x( \dfrac{d}{d \: cosx}  {cos}^{2} x \times  \dfrac{d \: cosx}{d x} ) + {cos}^{2} x( \dfrac{d}{d \: sinx}  {sin}^{2} x\times  \dfrac{d \: sinc}{dx}) \\  \\ \rm \implies 2cos x \: {sin}^{2} x(  \dfrac{d }{d x} cosx) + 2sinx \: {cos}^{2} x(  \dfrac{d }{d x}sinx) \\  \\  \rm \implies 2cos x \: {sin}^{2} x(   -  sinx) + 2sinx \: {cos}^{2} x(  cosx) \\  \\ \rm \implies  - 2cos x \: {sin}^{3} x + 2sinx \: {cos}^{3} x\\  \\ \rm \implies 2sinx \: {cos}^{3} x- 2cos x \: {sin}^{3} x  \\  \\  \rm \implies 2sinx \: cosx \: ( {cos}^{2} x -  {sin}^{2} x)

Similar questions