Physics, asked by ganesh50006, 10 months ago

if y=I n (In x) , then dy/dx is equal to....

Plz answer​

Attachments:

Answers

Answered by jagannaik0008
2

Answer:

option a is correct

Explanation:

☆derivative of lnx=1/x

☆for complex, we need to do double integrtion

dy/dx= d/dx(ln(lnx))

-------

^

treat as x'

= d/dx(lnx').d/dx(x')

=1/lnx.1/x where x' is lnx

=1/xlnx

Answered by DrNykterstein
4

 \sf \rightarrow \quad y = ln(ln \: x) \\  \\ \sf \rightarrow \quad  \frac{dy}{dx}  =  \frac{d}{dx} \bigg(  ln(ln \: x)\bigg)  \\  \\ \sf   \:  \: Applying \: chain \: rule \\  \\ \sf \rightarrow \quad  \frac{dy}{dx}  =  \frac{d(ln(ln \: x))}{d ( ln \: x)}  \cdot  \frac{d (ln \: x)}{dx}  \\  \\ \sf \rightarrow \quad  \frac{dy}{dx}  =  \frac{1}{ln \: x}   \cdot \frac{1}{x}  \\  \\ \sf \rightarrow \quad  \frac{dy}{dx}  =  \frac{1}{ x \: ln \: x}  \\  \\  \\  \underline{ \sf Properties \:  Used}  \\  \\  \qquad \sf \hookrightarrow  \frac{d( \blue{ln \: } \red{x})}{d \red{x}}  =  \frac{1}{ \red{x}}  \\  \\  \sf \qquad  \hookrightarrow  \: Chain  \: rule \\  \qquad \quad   \sf  \frac{d \green{y}}{ d \red{x}}  =  \frac{d \green{y}}{d \blue{u}}   \cdot  \frac{d \blue{u}}{d \red{x}}

Similar questions