Math, asked by natsudragonaire777, 1 month ago

If y=log(1+cos x), prove that y3+y2y1=0​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:y = log(1 + cosx)

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} log(1 + cosx)

We know,

\boxed{ \rm \:\dfrac{d}{dx}logx =  \frac{1}{x}}

So, using this, we get

\rm :\longmapsto\:y_1 = \dfrac{1}{1 + cosx}\dfrac{d}{dx}(1 + cosx)

We know,

\boxed{ \rm \:\dfrac{d}{dx}k = 0}

and

\boxed{ \rm \:\dfrac{d}{dx}cosx =  -  \: sinx}

So, using this,

\rm :\longmapsto\:y_1 = \dfrac{1}{1 + cosx}(0 - sinx)

\rm :\longmapsto\:y_1 =  -  \: \dfrac{sinx}{1 + cosx}

can be further reduced as

\rm :\longmapsto\:y_1 =  -  \: \dfrac{2sin\bigg[\dfrac{x}{2} \bigg]cos\bigg[\dfrac{x}{2} \bigg]}{2 {cos}^{2} \bigg[\dfrac{x}{2} \bigg]}

\rm :\longmapsto\:y_1 =  -  \: tan\dfrac{x}{2}  -  -  -  - (1)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} \: y_1 =  -  \:\dfrac{d}{dx}  \: tan\dfrac{x}{2}

We know,

\boxed{ \rm \:\dfrac{d}{dx}tanx =  {sec}^{2}x}

So, using this, we get

\rm :\longmapsto\:y_2 =  -  \:  {sec}^{2} \bigg[\dfrac{x}{2} \bigg]\dfrac{d}{dx}\dfrac{x}{2}

\rm :\longmapsto\:y_2 =  -  \:  {sec}^{2} \bigg[\dfrac{x}{2} \bigg] \times \dfrac{1}{2}

\rm :\longmapsto\:y_2 =  - \:\bigg(\dfrac{1}{2} \bigg) {sec}^{2} \bigg[\dfrac{x}{2} \bigg]

can be rewritten as

\rm :\longmapsto\:y_2 =  - \dfrac{1}{2} \bigg[1 + \:  {tan}^{2} \bigg[\dfrac{x}{2} \bigg]\bigg]

\rm :\longmapsto\:y_2 =  - \dfrac{1}{2} (1 +  {y_1}^{2}) \:  \:  \:  \:  \:  \:  \:  \:  \{ \: using \: (1) \:  \}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y_2 =  -  \: \dfrac{1}{2} \dfrac{d}{dx}(1 +  {y_1}^{2})

\rm :\longmapsto\:y_ 3 \: =  \:  - \dfrac{1}{2} \bigg(0 + 2y_1\dfrac{d}{dx}y_1\bigg)

\rm :\longmapsto\:y_ 3 \: =  \:  - y_1 \: y_2

\bf\implies \:y_3 + y_1 \: y_2 = 0

Hence, Proved

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions