Math, asked by adityapradhan1604, 21 hours ago

If y = log (sec x), then value of y1 is​

Answers

Answered by rayshaswata007
0

Answer:

y1 = y = log (sec x)

Step-by-step explanation: y1 = y * 1 = y

So, it is the same as the question

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y = log(secx)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \: \dfrac{d}{dx} y =\dfrac{d}{dx} log(secx)

We know,

\red{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}f[g(x)] = f'[g(x)]\dfrac{d}{dx}g(x) \: }}}

and

\red{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}logx =  \frac{1}{x} \: }}}

So, using this, we get

\rm :\longmapsto\: y_{1} = \dfrac{1}{secx}\dfrac{d}{dx}secx

\rm :\longmapsto\: y_{1} = \dfrac{1}{secx} \times secx \: tanx

\rm \implies\:\: y_{1}  \: = \: tanx

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions