Math, asked by pravinbommella, 2 months ago

if y= log ( secx+ tanx) then find dy/dx​

Answers

Answered by mathdude500
5

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{ \red{\bf{\dfrac{d}{dx}logx = \dfrac{1}{x}}}}

\boxed{ \red{\bf{\dfrac{d}{dx}tanx =  {sec}^{2}x }}}

\boxed{ \red{\bf{\dfrac{d}{dx}secx = secxtanx}}}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:y =  log(secx + tanx)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y = \dfrac{d}{dx}  log(secx + tanx)

\rm :\longmapsto\:\dfrac{dy}{dx}  = \dfrac{1}{secx + tanx} \dfrac{d}{dx} (secx + tanx)

\rm :\longmapsto\:\dfrac{dy}{dx}  = \dfrac{1}{secx + tanx}  \bigg(\dfrac{d}{dx} secx + \dfrac{d}{dx} tanx \bigg)

\rm :\longmapsto\:\dfrac{dy}{dx}  = \dfrac{1}{secx + tanx} \times ( {sec}^{2}x + secx \: tanx)

\rm :\longmapsto\:\dfrac{dy}{dx}  = \dfrac{1}{secx + tanx} \times secx( {sec}x \:   + \: tanx)

\bf\implies \:\dfrac{dy}{dx}  = secx

Additional Information :-

\boxed{ \red{\bf{\dfrac{d}{dx}k = 0}}}

\boxed{ \red{\bf{\dfrac{d}{dx}x = 1}}}

\boxed{ \red{\bf{\dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1}}}}

\boxed{ \red{\bf{\dfrac{d}{dx}sinx = cosx}}}

\boxed{ \red{\bf{\dfrac{d}{dx}cosx =   - sinx}}}

\boxed{ \red{\bf{\dfrac{d}{dx}cosecx  = - cosecx \: cotx}}}

\boxed{ \red{\bf{\dfrac{d}{dx} \sqrt{x}  = \dfrac{1}{2 \sqrt{x} }}}}

Similar questions