Math, asked by Pavan8831, 3 months ago

If y = log(sin(logx)), find dy
/
dx. ?​

Answers

Answered by Asterinn
53

 \rm  \longrightarrow y = log(sin(logx))

\rm  \longrightarrow \dfrac{dy}{dx} =  \dfrac{d \bigg(log(sin(logx)) \bigg)}{dx}

\rm  \longrightarrow \dfrac{dy}{dx} =   \dfrac{1}{sin(logx)}  \times \dfrac{d \bigg(sin(logx) \bigg)}{dx}

\rm  \longrightarrow \dfrac{dy}{dx} =   \dfrac{1}{sin(logx)}  \times cos(logx) \times \dfrac{d \bigg(logx \bigg)}{dx}

\rm  \longrightarrow \dfrac{dy}{dx} =   \dfrac{1}{sin(logx)}  \times cos(logx) \times   \dfrac{1}{x}  \times  \dfrac{d (x )}{dx}

\rm  \longrightarrow \dfrac{dy}{dx} =   \dfrac{1}{sin(logx)}  \times cos(logx) \times   \dfrac{1}{x}  \times 1

\rm  \longrightarrow \dfrac{dy}{dx} =   \dfrac{cos(logx)}{sin(logx)}  \times     \dfrac{1}{x}

\rm  \longrightarrow \dfrac{dy}{dx} =   \dfrac{cos(logx)}{x \: sin(logx)}

\rm  \longrightarrow \dfrac{dy}{dx} =   \dfrac{cot(logx)}{x}

Learn more :-

d(e^x)/dx = e^x

d(x^n)/dx = n x^(n-1)

d(ln x)/dx = 1/x

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x

Answered by latabara97
6

this photo is your answer

Attachments:
Similar questions