Math, asked by akhiraviarvk, 1 year ago

If y= log tan(π/4+x/2),show that dy/dx=secx

Answers

Answered by MaheswariS
3

\textbf{Given:}

y=\log\,tan(\frac{\pi}{4}+\frac{x}{2})

\textbf{To find:}\;\dfrac{dy}{dx}

\text{We apply chain rule to find the derivtive the given function}

y=\log\,tan(\frac{\pi}{4}+\frac{x}{2})

\text{Differentiate with respect to x}

\dfrac{dy}{dx}=\dfrac{1}{tan(\frac{\pi}{4}+\frac{x}{2})}\,\dfrac{d(tan(\frac{\pi}{4}+\frac{x}{2}))}{dx}

\dfrac{dy}{dx}=\dfrac{1}{tan(\frac{\pi}{4}+\frac{x}{2})}\,sec^2(\frac{\pi}{4}+\frac{x}{2})\,\dfrac{d(\frac{x}{2})}{dx}

\dfrac{dy}{dx}=\dfrac{1}{tan(\frac{\pi}{4}+\frac{x}{2})}\,sec^2(\frac{\pi}{4}+\frac{x}{2})\,\dfrac{1}{2}

\dfrac{dy}{dx}=\dfrac{cos(\frac{\pi}{4}+\frac{x}{2})}{sin(\frac{\pi}{4}+\frac{x}{2})}\,\dfrac{1}{cos^2(\frac{\pi}{4}+\frac{x}{2})}\,\dfrac{1}{2}

\dfrac{dy}{dx}=\dfrac{1}{sin(\frac{\pi}{4}+\frac{x}{2})}\,\dfrac{1}{cos^2(\frac{\pi}{4}+\frac{x}{2})}\,\dfrac{1}{2}

\dfrac{dy}{dx}=\dfrac{1}{2\;sin(\frac{\pi}{4}+\frac{x}{2})\;cos(\frac{\pi}{4}+\frac{x}{2})}

\text{Using,}

\bf\;2\;sinA\;cosA=sin2A

\dfrac{dy}{dx}=\dfrac{1}{sin2(\frac{\pi}{4}+\frac{x}{2})}

\dfrac{dy}{dx}=\dfrac{1}{sin(\frac{2\pi}{4}+\frac{2x}{2})}

\dfrac{dy}{dx}=\dfrac{1}{sin(\frac{\pi}{2}+x)}

\dfrac{dy}{dx}=\dfrac{1}{cosx}

\implies\bf\dfrac{dy}{dx}=secx

Find more:

1.Y = (tan x +cot x)/ (tan x - cotx ) then dy/dx =?

https://brainly.in/question/3429497

2.If y=√x+1/√x show that 2x d y /dx +y =2√x

https://brainly.in/question/5156094

3.If y = tan^–1(sec x + tan x), then find dy/dx.

https://brainly.in/question/8085217

Similar questions