Math, asked by Hirarth4394, 1 year ago

If y= log(tan pi/4+x/2) prove that dy/dx=sec x

Answers

Answered by hello50
155
Hence proved!
2sinAcosA=sin2A
tan=sin/cos
Attachments:
Answered by payalchatterje
0

Answer:

Given,

y = logtan( \frac{\pi}{4}  +  \frac{x}{2})

We are differentiating y with respect to x.

 \frac{dy}{dx}  =  \frac{1}{tan( \frac{\pi}{4}  +  \frac{x}{2}) }  \times \frac{d}{dx}  tan( \frac{\pi}{4}  +  \frac{x}{2})  \\  \frac{dy}{dx}  =  \frac{1}{tan( \frac{\pi}{4}  +  \frac{x}{2}) }  \times  {sec}^{2} ( \frac{\pi}{4}  +  \frac{x}{2} ) \times  \frac{d}{dx} ( \frac{x}{2} ) \\  \frac{dy}{dx}  =  \frac{1}{tan( \frac{\pi}{4}  +  \frac{x}{2}) }  \times  {sec}^{2} ( \frac{\pi}{4}  +  \frac{x}{2} ) \times  \frac{1}{2}

 \frac{dy}{dx}  = cot( \frac{\pi}{4}  +  \frac{x}{2})  \times  {sec}^{2} ( \frac{\pi}{4}  +  \frac{x}{2}) \times  \frac{1}{2}

 \frac{dy}{dx}  =  \frac{ \cos( \frac{\pi}{4}  +  \frac{x}{2}) }{ \sin(\frac{\pi}{4}  +  \frac{x}{2})}  \times   \frac{1}{ {cos}^{2} ( \frac{\pi}{4}  +  \frac{x}{2})}  \times  \frac{1}{2}

 \frac{dy}{dx}  =  \frac{1}{2sin( \frac{\pi}{4}  +  \frac{x}{2})cos( \frac{\pi}{4}  +  \frac{x}{2})}

 \frac{dy}{dx}  =  \frac{1}{sin2( \frac{\pi}{4}  +  \frac{x}{2})}  \\  =  \frac{1}{sin( \frac{\pi}{2}  + x)}  \\  =  \frac{1}{cosx}

Therefore

 \frac{dy}{dx}  =   \sec(x)

Hence proved.

Here applied formulas are

 \tan(\theta)  =  \frac{ \sin(\theta) }{ \cos(\theta) }  \\  \cos(\theta)  =  \frac{1}{ \sec(\theta) }  \\  \sin(2\theta)  = 2 \sin(\theta)  \cos(\theta)  \\  \frac{d}{dx} ( log(a)) =  \frac{1}{a}   \\  \frac{d}{dx} ( \tan(\theta) ) =  {sec}^{2} \theta \\ sin(\pi + \theta) =  \cos(\theta)

Know more about Derivative:

https://brainly.in/question/1044252

https://brainly.in/question/217760

Similar questions