If y=log tan (pie/4 +x/2) show that dy/dx = sec x
Answers
Answered by
2
We know that tan (pie/4 +x/2) = sec x + tanx
Now you can calculate the derivate to get dy/dx = sec x
Now you can calculate the derivate to get dy/dx = sec x
A212:
Tell the process
Answered by
3
dy/dx={1/tan (pi/4+x/2)}sec^2 (pi/4+x/2).1/2
=1/2sec(pi/4+x/2)/sin (pi/4+x/2)
=1/{2sin (pi/4+x/2).cos (pi/4+x/2)}
=1/sin (pi/2+x)=1/cosx=secx
dy/dx=secx
=1/2sec(pi/4+x/2)/sin (pi/4+x/2)
=1/{2sin (pi/4+x/2).cos (pi/4+x/2)}
=1/sin (pi/2+x)=1/cosx=secx
dy/dx=secx
Similar questions