Math, asked by kirndeepkaur98515, 8 months ago

if y=log(
 \sqrt{x}  +  \sqrt{x - a}
than dy/dx​

Answers

Answered by kaushik05
6

Given:

 \star \: y =  log( \sqrt{x} +  \sqrt{x - a}  )  \\

To find :

 \star \:  \frac{dy}{dx}  \\

Solution:

 \implies \:  \frac{d}{dx} ( log( \sqrt{x} +  \sqrt{x - a}  )  \\  \\  \implies \:  \frac{1}{ \sqrt{x} +  \sqrt{x - a}  }  \times  \frac{d}{dx} ( \sqrt{x}  +  \sqrt{x - a} ) \\  \\  \implies \:  \frac{1}{ \sqrt{x} +  \sqrt{x - a}  }   \times ( \frac{1}{2 \sqrt{x} }  \frac{d}{dx} (x) +  \frac{1}{2 \sqrt{x - a} }  \frac{d}{dx} (x - a)) \\  \\  \implies \:  \frac{1}{ \sqrt{x} +  \sqrt{x - a}  }  \times ( \frac{1}{2 \sqrt{x} } (1) +  \frac{1}{2 \sqrt{x - a} } (1 - 0)) \\  \\  \implies \:  \frac{1}{ \sqrt{x}  +  \sqrt{x - a} }  \times ( \frac{1}{2 \sqrt{x} }  +  \frac{1}{2 \sqrt{x - a} } )

Formula:

 \star \bold{ \frac{d}{dx}  log(x)  =  \frac{1}{x} } \\   \\  \star \bold{ \frac{d}{dx}  \sqrt{x}  =  \frac{1}{2 \sqrt{x} } } \\   \ \\  \star \bold{ \frac{d}{dx} constant = 0}

Answered by Anonymous
4

Given ,

The function is

  •  \tt y = log( \sqrt{x}  +  \sqrt{x -a } )

Differentiating y wrt x , we get

 \tt \implies \frac{dy}{dx}  =  \frac{1}{ \sqrt{x}  +  \sqrt{x - a} }  \frac{d( \sqrt{x}  +  \sqrt{x - a} }{dx}

 \tt \implies \frac{dy}{dx}  =  \frac{1}{ \sqrt{x}  +  \sqrt{x - a} } \{  \frac{d( \sqrt{x}) }{dx}  +   \frac{d( \sqrt{x - a} )}{dx}  \}

 \tt \implies \frac{dy}{dx}  =  \frac{1}{ \sqrt{x}  +  \sqrt{x - a} }   \{  \frac{1}{2 \sqrt{x} }  +  \frac{1}{2 \sqrt{x - a} }  \frac{d(x - a)}{dx}  \}

 \tt \implies \frac{dy}{dx}  =  \frac{1}{ \sqrt{x}  +  \sqrt{x - a} }   \{  \frac{1}{2 \sqrt{x} }  +  \frac{1}{2 \sqrt{x - a} } \} \{  \frac{d(x )}{dx}  -  \frac{d(a)}{dx}  \} \}

 \tt \implies \frac{dy}{dx}  =  \frac{1}{ \sqrt{x}  +  \sqrt{x - a} }   \{  \frac{1}{2 \sqrt{x} }  +  \frac{1}{2 \sqrt{x - a} }  \}  \{ (1 - 0) \}

 \tt \implies \frac{dy}{dx}  =  \frac{1}{ \sqrt{x}  +  \sqrt{x - a} }    \{  \frac{1}{2 \sqrt{x} }  +  \frac{1}{2 \sqrt{x - a} }   \}

Remmember :

 \tt \frac{d \{ log(x)  \}}{dx}  =  \frac{1}{x}

 \tt  \frac{d {(x)}^{n - 1} }{dx} = n {(x)}^{n - 1}

 \tt  \frac{d( \sqrt{x} )}{dx}  =  \frac{1}{2 \sqrt{x} }

\tt \frac{d(constant)}{dx}  = 0

______________ Keep Smiling

Similar questions