Math, asked by ameenspk8irananchu, 1 year ago

if y=log(under root 1-cos2x/1+cos2x) then show that dy/dx=2cosec2x

Answers

Answered by MADHANSCTS
32
Y = Log  \frac{ \sqrt{1-cos2x} }{ \sqrt{1+cos2x} }
   = Log  \frac{ \sqrt{2sin^{2}x } }{ \sqrt{2cos^{2}x }}
   = Log  \frac{sinx}{cosx}
   = log sinx - Log cosx
 \frac{dy}{dx}  =  \frac{d}{dx} (log sinx - Log cosx)
                                   =  \frac{cosx}{sinx}  \frac{sinx}{cosx}
                                   = (sin²x + cos²x)/sinx.cosx
                                   = 2/2six.cosx
                                   = 2/sin2x
                                   = 2cosec2x
Answered by harendrachoubay
11

\dfrac{dy}{dx}=2\csc 2x, proved.

Step-by-step explanation:

We have,

y=\log \sqrt{\dfrac{1-\cos 2x}{1+\cos 2x}}

Show that, \dfrac{dy}{dx}=2\csc 2x

y=\log \sqrt{\dfrac{1-\cos 2x}{1+\cos 2x}}

y=\log \sqrt{\dfrac{2\sin^2 2x}{2\cos^2 2x}}

Using formula:

1-\cos 2x=2\sin^2 2x and

1+\cos 2x=2\cos^2 2x

y=\log \sqrt{\tan^2 2x}

y=\log ({\tan 2x})

Differentiating both sides w.r.t. x, we get

\dfrac{dy}{dx}=\dfrac{1}{\tan 2x} \dfrac{d(\tan 2x)}{dx}

\dfrac{dy}{dx}=\dfrac{1}{\tan 2x} 2\sec^ 2x

\dfrac{dy}{dx}=2\dfrac{\cos 2x}{\sin 2x}.\dfrac{1}{\cos^2 2x}

\dfrac{dy}{dx}=2\dfrac{1}{\sin 2x}

\dfrac{dy}{dx}=2\csc 2x, proved.

Similar questions