Math, asked by vaishnavisalunke80, 1 month ago

if y=log (x sin 2x),find dy/dx​

Answers

Answered by DeeznutzUwU
0

       \underline{\bold{Solution:}}

       y = log(xsin2x)

\implies \dfrac{dy}{dx} = \dfrac{d}{dx}[log(xsin2x)]

       \text{Applying chain rule which states that:}

       \dfrac{d}{dy}[f(g(x))]= f'(g(x))\times g'(x)

\implies \dfrac{dy}{dx} = \dfrac{d}{dx}[log(xsin2x)]\times\dfrac{d}{dx}[xsin2x]

\implies \dfrac{dy}{dx} = \dfrac{1}{xsin2x}\times\dfrac{d}{dx}[xsin2x]

       \text{Applying the product rule which states that:}

       \dfrac{d(uv)}{dx} = u(\dfrac{dv}{dx}) + v(\dfrac{du}{dx})

\implies \dfrac{dy}{dx} = \dfrac{1}{xsin2x}\times[x\dfrac{d(sin2x)}{dx} + sin2x(\dfrac{dx}{dx})]

\implies \dfrac{dy}{dx} = \dfrac{1}{xsin2x}\times[x\dfrac{d(sin2x)}{dx} + sin2x]

       \text{Applying chain rule}

\implies \dfrac{dy}{dx} = \dfrac{1}{xsin2x}\times[x\{\dfrac{d(sin2x)}{dx}\times\dfrac{d(2x)}{dx}\} + sin2x]

       \text{Applying constant rule which states that:}

       \dfrac{d[kf(x)]}{dx} = k\dfrac{d[f(x)]}{dx}

\implies \dfrac{dy}{dx} = \dfrac{1}{xsin2x}\times[x(cos2x\times2) + sin2x]

\implies \dfrac{dy}{dx} = \dfrac{1}{xsin2x}\times[2xcos2x + sin2x]

\implies \dfrac{dy}{dx} = \dfrac{2xcos2x + sin2x}{xsin2x}

\implies \dfrac{dy}{dx} = \dfrac{2xcos2x}{xsin2x} + \dfrac{sin2x}{xsin2x}

\implies \dfrac{dy}{dx} = 2cot2x + \dfrac{1}{x}

\implies \boxed{\dfrac{dy}{dx} = \dfrac{2xcotx+1}{x}}

Similar questions