Math, asked by venketeshavs5029, 1 year ago

If y=log(x+√x^2+1), then prove that (x^2+1)d^2y/dx^2+xdy/dx=0

Answers

Answered by MaheswariS
7



I have applied substitution method to solve this problem.



Take


x=tanβ


x²+1= tan²β+1= sec²β


dx/dβ = sec²β


y=log(tanβ+√tan²β+1)


y=log(tanβ+secβ)



dy/dβ = (1/tanβ+secβ).(sec²β+secβ.tanβ)


dy/dβ = (1/tanβ+secβ). secβ(secβ+tanβ)


dy/dβ = secβ




Now,


dy/dx=(dy/dβ).(dβ/dx)


dy/dx=secβ.(1/ sec²β)


dy/dx=1/ secβ


dy/dx= cosβ



d²y/dx² = - sinβ. (dβ/dx)


d²y/dx² = - sinβ.(1/sec²β)



(x²+1)(d²y/dx²)+x(dy/dx)


= sec²β.( - sinβ.(1/sec²β))+tanβ.cosβ


= ( - sinβ)+(sinβ/cosβ).cosβ


= (- sinβ)+sinβ


=0



Similar questions