If y=log(x+√x^2+1), then prove that (x^2+1)d^2y/dx^2+xdy/dx=0
Answers
Answered by
7
I have applied substitution method to solve this problem.
Take
x=tanβ
x²+1= tan²β+1= sec²β
dx/dβ = sec²β
y=log(tanβ+√tan²β+1)
y=log(tanβ+secβ)
dy/dβ = (1/tanβ+secβ).(sec²β+secβ.tanβ)
dy/dβ = (1/tanβ+secβ). secβ(secβ+tanβ)
dy/dβ = secβ
Now,
dy/dx=(dy/dβ).(dβ/dx)
dy/dx=secβ.(1/ sec²β)
dy/dx=1/ secβ
dy/dx= cosβ
d²y/dx² = - sinβ. (dβ/dx)
d²y/dx² = - sinβ.(1/sec²β)
(x²+1)(d²y/dx²)+x(dy/dx)
= sec²β.( - sinβ.(1/sec²β))+tanβ.cosβ
= ( - sinβ)+(sinβ/cosβ).cosβ
= (- sinβ)+sinβ
=0
Similar questions