Math, asked by LordNinnja, 1 month ago

If y= log( xe^x), then derivative is given by

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  log(x {e}^{x} )

\rm :\longmapsto\:y = logx + log {e}^{x}

 \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf{ \: \because \: logxy = logx \:  +  \: logy }}}

\rm :\longmapsto\:y = logx \:  + x \: loge

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf{ \:  \because \: log {x}^{y} = y \: logx }}}

\rm :\longmapsto\:y = logx + x \times 1

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf{ \: \because \: loge = 1 }}}

\rm :\longmapsto\:y = logx + x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}( logx + x)

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{d}{dx} logx +\dfrac{d}{dx} x

\bf :\longmapsto\:\dfrac{dy}{dx} =\dfrac{1}{x}  + 1

Additional Information :-

\green{\boxed{ \bf{ \:\dfrac{d}{dx}k = 0}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}x = 1}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}logx = \dfrac{1}{x} }}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx} {e}^{x}  =  {e}^{x} }}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx} {a}^{x}  =  {a}^{x}logx }}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx} sinx  =  cosx }}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx} cosx  =  -  sinx }}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx} cotx  =  -   {cosec}^{2} x }}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx} tanx  = {sec}^{2} x }}}

Similar questions