Math, asked by deeptisharma7101, 6 months ago

If y = (loge x)^x + x^logex. find
dy/dx​

Attachments:

Answers

Answered by Anonymous
6

Solution:-

 \implies \rm \: y = ( log_{e}x) {}^{x}  +  {x}^{ log_{e}x}

To find

 \rm \implies  \dfrac{dy}{dx}

Now

 \implies \rm \: y = ( log_{e}x) {}^{x}  +  {x}^{ log_{e}x}

Let

  \implies \rm \: a= ( log_{e}x) {}^{x}   \:  \: and \:  \:  \: b =   {x}^{ log_{e}x}

 \rm \implies \: y = a + b

Take

 \rm \implies \: a = ( log_{e}x) {}^{x}

Taking both side log

 \rm \implies log_{e}a =  log( log_{e}x) {}^{x}

Using logarithmic properties

 \rm \implies log_{e}a=x  log( log_{e}x)

Now differentiate w.r.t x

 \rm \implies \dfrac{1}{a}  \times  \dfrac{da}{dx}  = x \times  \dfrac{ 1 }{ log_{e}x}  \times  \dfrac{1}{x}  +  log( log_{e}x)  \times 1

In above step we use product rule of differentiation

\rm \implies \dfrac{1}{a}  \times  \dfrac{da}{dx}  =  \cancel{ x }\times  \dfrac{ 1 }{ log_{e}x}  \times  \dfrac{1}{ \cancel{x}}  +  log( log_{e}x)  \times 1

\rm \implies    \dfrac{da}{dx}  =  \bigg \{ \dfrac{ 1 }{ log_{e}x}   +  log( log_{e}x)   \bigg \} \times a

So value of a is

 \rm \implies \: a = ( log_{e}x) {}^{x}

By putting the value

\rm \implies    \dfrac{da}{dx}  =  \bigg \{ \dfrac{ 1 }{ log_{e}x}   +  log( log_{e}x)   \bigg \} ( log_{e}x) {}^{x}

Now take

 \rm \implies \:  {x}^{ log_{e}x }  = b

Taking both side log

 \implies \rm log(x {}^{ log_{e}x} ) =   log  b

Using logarithmic properties

 \rm \implies logx \times  logx =  logb

 \implies \rm logb =  (logx) ^{2}

Differentiate wrt to x

 \rm \implies \:  \dfrac{1}{b}  \times  \dfrac{db}{dx}  = 2 logx \times  \dfrac{1}{x}

In above step using chain rule

\rm \implies \:    \dfrac{db}{dx}  =  \bigg \{2 logx \times  \dfrac{1}{x}  \bigg \} \times b

Put the value of b

\rm \implies \:  {x}^{ log_{e}x }  = b

we get

\rm \implies \:    \dfrac{db}{dx}  =  \bigg \{2 logx \times  \dfrac{1}{x}  \bigg \} \times {x}^{ log_{e}x }

Now take

 \rm \implies \: y = a + b

Differentiate with respect to x

 \rm \implies \:  \dfrac{dy}{dx}  =  \dfrac{da}{dx}  +  \dfrac{db}{dx}

So put the value of da/dx and db/dx

 \rm \implies \:  \dfrac{dy}{dx}  =  \bigg \{ \dfrac{ 1 }{ log_{e}x}   +  log( log_{e}x)   \bigg \} ( log_{e}x) {}^{x}  + \bigg \{2 logx \times  \dfrac{1}{x}  \bigg \} \times {x}^{ log_{e}x }

Answer

\rm \implies \:  \dfrac{dy}{dx}  =  \bigg \{ \dfrac{ 1 }{ log_{e}x}   +  log( log_{e}x)   \bigg \} ( log_{e}x) {}^{x}  + \bigg \{2 logx \times  \dfrac{1}{x}  \bigg \} \times {x}^{ log_{e}x }

Similar questions