Math, asked by bharatinikita269, 19 days ago

if y=logtan(π/4+x/2) then show that dy/dx-secx=0

Answers

Answered by Syamkumarr
1

Answer:

Step by step proof below:

Step-by-step explanation:

Given y = log tan(π/4+x/2)

dy/dx =  \frac{1}{ tan(\pi /4+x/2)} * \frac{d}{dx}(tan(π/4+x/2) )                   (\frac{dy}{dx} log x = \frac{1}{x} and Chain Rule)

          = \frac{1}{ tan(\pi /4+x/2)} * sec²(π/4+x/2) * (0+ 1/2)    (\frac{dy}{dx} tan x = sec²x & Chain Rule)

          = \frac{1}{ tan(\pi /4+x/2)} * sec²(π/4+x/2) * (1/2)

          =  \frac{sec^{2} (\pi /4+x/2) }{2* tan(\pi /4+x/2)}

          = \frac{cos (\pi /4+x/2) }{2* sin(\pi /4+x/2)cos^{2} (\pi /4+x/2)}                  ( tan x = \frac{sinx}{cos x} and sec x = \frac{1}{cos x})

          = \frac{1 }{2* sin(\pi /4+x/2)cos (\pi /4+x/2)}

          = \frac{1 }{ sin 2(\pi /4+x/2)}                                     ( sin 2x = 2*sin x*cos x)

          = \frac{1 }{ sin (\pi /2+x)}                                          

          = \frac{1 }{ cos x}                                                   (sin (90 + x) = cos x)

          = sec x                                                 ( sec x = \frac{1}{cos x})

We need to show that \frac{dy}{dx} - sec x = 0

Taking Left Hand Side

=> \frac{dy}{dx} - sec x

Substituting the value of \frac{dy}{dx} from above

= sec x - sec x

= 0

= Right Hand Side

Hence, the result.

Similar questions