Math, asked by guptaananya2005, 1 month ago

If y=logtanx prove that dy/dx = 2 cosec2x​

Answers

Answered by mathdude500
6

 \green{\large\underline{\sf{Solution-}}}

Given function is

\rm :\longmapsto\:y \:  =  \: log \: tanx

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y \:  = \dfrac{d}{dx}  \: log \: tanx

We know

\boxed{ \tt{ \: \dfrac{d}{dx} tanx =  {sec}^{2}x \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx}  = \dfrac{1}{tanx}\dfrac{d}{dx} tanx

\rm :\longmapsto\:\dfrac{dy}{dx}  = \dfrac{1}{tanx} \times  {sec}^{2}x

\rm :\longmapsto\:\dfrac{dy}{dx}  =\dfrac{1}{\dfrac{sinx}{cosx}} \times   \dfrac{1}{ {cos}^{2} x}

\rm :\longmapsto\:\dfrac{dy}{dx}  =  \dfrac{1}{sinx \: cosx}

\rm :\longmapsto\:\dfrac{dy}{dx}  =  \dfrac{2}{2 \: sinx \: cosx}

\rm :\longmapsto\:\dfrac{dy}{dx}  =  \dfrac{2}{sin2x}

\rm :\longmapsto\:\dfrac{dy}{dx}  =  2 \: cosec2x

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{dy}{dx}  =  2 \: cosec2x \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions