If y=logtanx, the find dx/dy
Answers
Answered by
16
Let p = tan x dp/dx = sec ² x y = log pdy/dp = 1 /p
now,dy/dx = (1 / p) (sec ² x)
⇒dy/dx = (1 / tan x) (sec ² x)
⇒dy/dx = cot x sec ² x
⇒dy/dx = (cos x / sin x) (1 / cos ² x)
⇒dy/dx = 1 / ( sin x cos x)
⇒dy/dx = 2 / (2 sin x cos x)
⇒dy/dx = 2 / sin 2x
or
dy/dx = 2 cosec 2x
now,dy/dx = (1 / p) (sec ² x)
⇒dy/dx = (1 / tan x) (sec ² x)
⇒dy/dx = cot x sec ² x
⇒dy/dx = (cos x / sin x) (1 / cos ² x)
⇒dy/dx = 1 / ( sin x cos x)
⇒dy/dx = 2 / (2 sin x cos x)
⇒dy/dx = 2 / sin 2x
or
dy/dx = 2 cosec 2x
Similar questions
History,
7 months ago
History,
7 months ago
English,
7 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago
English,
1 year ago