Math, asked by yadavlucky5977, 10 months ago

If+y=logx/x,prove that d^2/dx^2=2logx-3/x^3

Answers

Answered by BrainlyIAS
2

Answer :

\frac{d^2y}{dx^2}=\frac{2logx-3}{x^3}

Step-by-step explanation :

y=\frac{logx}{x} [Since*use*u/v*method]\\\\=>\frac{dy}{dx}=\frac{ x\frac{1}{x}-logx*1}{x^2} \\\\ =>\frac{dy}{dx}=\frac{1-logx}{x^2} \\\\=>\frac{d^2y}{dx^2}=\frac{x^2.\frac{-1}{x}- (1-logx)2x}{x^4}  \\\\=>\frac{d^2y}{dx^2}=\frac{-x-2x+2xlogx}{x^4}\\\\ =>\frac{d^2y}{dx^2}=\frac{-3x+2xlogx}{x^4}[Take*x*as*common]\\\\ =>\frac{d^2y}{dx^2}=\frac{2logx-3}{x^3}

Hence Proved.

________________________________

>>> Hope Helps You <<<

Similar questions