Math, asked by thakurvishal973, 1 year ago

if y= logx/x, show that d2y/dx2=2logx-3/x3

Attachments:

Answers

Answered by abhi178
21

y = \frac{logx}{x} \\  \\ differentiate \: wrt \: to \: x \:  \\  \\ \frac{dy}{dx}  =  \frac{x. \frac{d( log(x)) }{dx} -  log(x). \frac{dx}{dx}   }{ {x}^{2} }  \\   \frac{dy}{dx}  =  \frac{1 - logx}{ {x}^{2} }  \\  \\ again \: differentiate \: wrt \: x \:  \\  \\  \frac{ {d}^{2}y }{d {x}^{2} }  =  \frac{ {x}^{2}  \frac{d(1 - logx)}{dx} - (1 - logx) \frac{d {x}^{2} }{dx}  }{ {x}^{4} }   \\  \\  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ {x}^{2}(0 -  \frac{1}{x}) - (1 - logx)2x  }{ {x}^{4}} \\  \\  \:  \:  \:  \:  \:  \:  \:  =  \frac{2xlogx - 3x}{ {x}^{4} }  \\  \\  \:  \:  \:  \:  \:  \:  \:  =  \frac{2logx - 3}{ {x}^{3} }
Attachments:
Answered by karthiksagar4646
0

Answer:

Step-by-step explanation:

Similar questions