Math, asked by kirilkumar1196, 1 year ago

If y = Pe^ax + Qe^bx, show that d^2y/dx^2 - (a + b)dy/dx + aby = 0

Answers

Answered by Swarup1998
36
\boxed{\underline{\textsf{Solution :}}}

\textsf{The given equation is}

\bold{y = Pe^{ax} + Qe^{bx}}

\textsf{Diff. both sides w. r. to x, we get}

\bold{\frac{dy}{dx} = \frac{d}{dx}(Pe^{ax} + Qe^{bx})}

\to \bold{\frac{dy}{dx} = \frac{d}{dx}(Pe^{ax}) + \frac{d}{dx}(Qe^{bx})}

\to \bold{\frac{dy}{dx} = P\frac{d}{dx}(e^{ax}) + Q\frac{d}{dx}(e^{bx})}

\to \boxed{\bold{\frac{dy}{dx} = Pae^{ax} + Qbe^{bx}}}

\{\textsf{since}\:\bold{\frac{d}{dx}(e^{mx}) = me^{mx}\}}

\textsf{Again, diff. with respect to x, we get}

\bold{\frac{d}{dx}(\frac{dy}{dx}) = \frac{d}{dx}(Pae^{ax} + Qbe^{bx})}

\to \bold{\frac{d^{2}y}{dx^{2}} = \frac{d}{dx}(Pae^{ax}) + \frac{d}{dx}(Qbe^{bx})}

\to \bold{\frac{d^{2}y}{dx^{2}} = Pa\frac{d}{dx}(e^{ax}) + Qb\frac{d}{dx}(e^{bx})}

\to \boxed{\bold{\frac{d^{2}y}{dx^{2}} = Pa^{2}e^{ax} + Qb^{2}e^{bx}}}

\textsf{Now,}

\bold{\frac{d^{2}y}{dx^{2}} - (a+b)\frac{dy}{dx} + aby}

=\bold{(Pa^{2}e^{ax}+Qb^{2}e^{bx})}

 \bold{- (a+b)(Pae^{ax}+Qbe^{bx})}

 \bold{+ ab(Pe^{ax} + Qe^{bx})}

= \small{\bold{Pa^{2}e^{ax} + Qb^{2}e^{bx} -Pa^{2}e^{ax}-Qb^{2}e^{bx}}}

\small{\bold{-Pabe^{ax}-Qabe^{bx}+Pabe^{ax}+Pabe^{bx}}}

=\bold{0}

\to \small{\boxed{\boxed{\bold{\frac{d^{2}y}{dx^{2}} - (a+b)\frac{dy}{dx} + aby=0}}}}

\underline{\textsf{Hence, proved.}}

QGP: Excellent!
Swarup1998: Thank you! :)
Noah11: Alluring Answer! :heart_Eyes:
Tomboyish44: Awesome Answer!
Similar questions