Math, asked by kumarabhishek38392, 8 months ago

If y= sec-¹ (x+1\x-1) + sin-¹ (x-1\x+1), then dy\dx is​

Answers

Answered by MaheswariS
5

\underline{\textsf{Given:}}

\mathsf{y=sec^{-1}(\dfrac{x+1}{x-1})+sin^{-1}(\dfrac{x-1}{x+1})}

\underline{\textsf{To find:}}

\mathsf{\dfrac{dy}{dx}}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{y=sec^{-1}(\dfrac{x+1}{x-1})+sin^{-1}(\dfrac{x-1}{x+1})}

\textsf{Using the identity}

\boxed{\mathsf{sec^{-1}x=cos^{-1}\dfrac{1}{x}}}

\mathsf{y=cos^{-1}(\dfrac{x-1}{x+1})+sin^{-1}(\dfrac{x-1}{x+1})}

\textsf{We know that,}

\boxed{\mathsf{sin^{-1}x+cos^{-1}x=\dfrac{\pi}{2}}}

\mathsf{y=\dfrac{\pi}{2}}

\textsf{Differentiate with respect to x}

\implies\mathsf{\dfrac{dy}{dx}=0}

Similar questions