Math, asked by ashfaknawshad, 3 months ago

if y= sec x + tan x show that the second derivative of y with respect to x is cos x/(1-sinx)²​

Answers

Answered by mathdude500
4

\large\underline{\bold{Given \:Question - }}

\sf \:If \: y = secx + tanx, \: prove \: that \: y_2 = \dfrac{cosx}{ {(1 - sinx)}^{2} }

Formula Used :-

\boxed{\bf\:\dfrac{d}{dx}sinx = cosx}

\boxed{\bf\:\dfrac{d}{dx}cosx =  - sinx}

\boxed{\bf\: \dfrac{d}{dx}k = 0}

\boxed{\bf\: \dfrac{d}{dx}y = y_1}

\boxed{\bf\: \dfrac{d}{dx}y_1 = y_2}

\boxed{\bf\: \dfrac{d}{dx}\dfrac{u}{v} = \dfrac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2}}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y = secx + tanx

\rm :\longmapsto\:y = \dfrac{1}{cosx}  + \dfrac{sinx}{cosx}

\rm :\longmapsto\:y = \dfrac{1 + sinx}{cosx}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} \dfrac{1 + sinx}{cosx}

\rm :\longmapsto\:y_1 = \dfrac{cosx\dfrac{d}{dx}(1 + sinx) - (1 + sinx)\dfrac{d}{dx}cosx}{ {cos}^{2}x }

\rm :\longmapsto\:y_1 = \dfrac{cosx(0 + cosx) - (1 + sinx)( - sinx)}{ {cos}^{2}x }

\rm :\longmapsto\:y_1 = \dfrac{ {cos}^{2}x  +  sinx +  {sin}^{2}x}{ {cos}^{2}x}

\rm :\longmapsto\:y_1 = \dfrac{1  +  sinx}{ {cos}^{2}x }

\rm :\longmapsto\:y_1 = \dfrac{1  +  sinx}{1 -  {sin}^{2}x }

\rm :\longmapsto\:y_1 = \dfrac{1  +  sinx}{(1 -  {sin}x)(1 + sinx) }

\bf\implies \: y_1= \dfrac{1}{1  -  sinx}

On differentiating both sides w. r. t. x, we get

\bf\implies \: \dfrac{d}{dx}y_1=\dfrac{d}{dx} \dfrac{1}{1  -  sinx}

\rm :\longmapsto\:y_2 = \dfrac{d}{dx} {(1 - sinx)}^{ - 1}

\rm :\longmapsto\:y_2 =  - 1 {(1 - sinx)}^{ - 1 - 1}\dfrac{d}{dx}(1 - sinx)

\rm :\longmapsto\:y_2 =  - 1 {(1 - sinx)}^{ - 2}(0 - cosx)

\bf\implies \:y_2 = \dfrac{cosx}{ {(1 - sinx)}^{2} }

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

\boxed{\bf\: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}

\boxed{\bf\: \dfrac{d}{dx}x = 1}

\boxed{\bf\: \dfrac{d}{dx}tanx =  {sec}^{2}x}

\boxed{\bf\: \dfrac{d}{dx}cotx =  { - \:  cosec}^{2}x}

\boxed{\bf\: \dfrac{d}{dx}secx = secx \: tanx}

\boxed{\bf\: \dfrac{d}{dx}cosecx = -  \:  cosecx \: cotx}

Similar questions