Math, asked by snehalkhatalsaurabhk, 12 hours ago

If y=sin^-1 (10x÷1+25x^2) then find dy/dx. ​

Answers

Answered by sajan6491
18

 \tt \red{\frac{d}{dx} \: {y=sin^{-1 }(10x÷1+25x^2)}}

Can be written as:-

 \tt \red{\frac{d}{dx} \left(y = \operatorname{asin}{\left(25 x^{2} + 10 x \right)}\right)}

SOLUTION

Differentiate separately both sides of the equation (treat y as a function of x) \tt\red {\frac{d}{dx} \left(y{\left(x \right)}\right) = \frac{d}{dx} \left(\operatorname{asin}{\left(25 x^{2} + 10 x \right)}\right)}

Differentiate the RHS of the equation.

 \tt \red{The  \: function\operatorname{asin}{\left(25 x^{2} + 10 x \right)}} \\  \tt \red{  is  \: the \:  composition  \: f{\left(g{\left(x \right)} \right)}  \: of \: } \\ \tiny  \tt \red{ two  \: functions \:  f{\left(u \right)} = \operatorname{asin}{\left(u \right)} \:  and \:  g{\left(x \right)} = 25 x^{2} + 10 x}

Apply the chain rule

 \tt \red{\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)}

 \tiny \tt \red{\color{red}{\left(\frac{d}{dx} \left(\operatorname{asin}{\left(25 x^{2} + 10 x \right)}\right)\right)} = \color{red}{\left(\frac{d}{du} \left(\operatorname{asin}{\left(u \right)}\right) \frac{d}{dx} \left(25 x^{2} + 10 x\right)\right)}}

The derivative of the inverse sine is

 \tiny \tt \red{\frac{d}{du} \left(\operatorname{asin}{\left(u \right)}\right) = \frac{1}{\sqrt{1 - u^{2}}}\color{red}{\left(\frac{d}{du} \left(\operatorname{asin}{\left(u \right)}\right)\right)} \frac{d}{dx} \left(25 x^{2} + 10 x\right)}

 \tt \red{ = \color{red}{\left(\frac{1}{\sqrt{1 - u^{2}}}\right)} \frac{d}{dx} \left(25 x^{2} + 10 x\right)}

Return to the old variable:

 \tt \red{\frac{\frac{d}{dx} \left(25 x^{2} + 10 x\right)}{\sqrt{1 - \color{red}{\left(u\right)}^{2}}} = \frac{\frac{d}{dx} \left(25 x^{2} + 10 x\right)}{\sqrt{1 - \color{red}{\left(25 x^{2} + 10 x\right)}^{2}}}}

The derivative of a sum/difference is the sum/difference of derivatives:

 \small \tt \red{\frac{\color{red}{\left(\frac{d}{dx} \left(25 x^{2} + 10 x\right)\right)}}{\sqrt{1 - \left(25 x^{2} + 10 x\right)^{2}}} = \frac{\color{red}{\left(\frac{d}{dx} \left(25 x^{2}\right) + \frac{d}{dx} \left(10 x\right)\right)}}{\sqrt{1 - \left(25 x^{2} + 10 x\right)^{2}}}}

Apply the constant multiple rule

 \tt \tiny \red{\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right) with \:  c = 10  \: and \:  f{\left(x \right)} = x}

 \tiny \tt \red{\frac{\color{red}{\left(\frac{d}{dx} \left(10 x\right)\right)} + \frac{d}{dx} \left(25 x^{2}\right)}{\sqrt{1 - \left(25 x^{2} + 10 x\right)^{2}}} = \frac{\color{red}{\left(10 \frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(25 x^{2}\right)}{\sqrt{1 - \left(25 x^{2} + 10 x\right)^{2}}}}

Apply the power rule

 \tiny \tt\red{\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}  \: with \:  n = 1, in \:  other \:  words, \frac{d}{dx} \left(x\right) = 1}

  \tiny  \tt \red{\frac{10 \color{red}{\left(\frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(25 x^{2}\right)}{\sqrt{1 - \left(25 x^{2} + 10 x\right)^{2}}} = \frac{10 \color{red}{\left(1\right)} + \frac{d}{dx} \left(25 x^{2}\right)}{\sqrt{1 - \left(25 x^{2} + 10 x\right)^{2}}}}

Apply the constant multiple rule

 \tiny  \tt\red{\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \:  \frac{d}{dx} \left(f{\left(x \right)}\right) with \:  c = 25  \: and \:  f{\left(x \right)} = x^{2}}

 \tiny \tt \red{\frac{\color{red}{\left(\frac{d}{dx} \left(25 x^{2}\right)\right)} + 10}{\sqrt{1 - \left(25 x^{2} + 10 x\right)^{2}}} = \frac{\color{red}{\left(25 \frac{d}{dx} \left(x^{2}\right)\right)} + 10}{\sqrt{1 - \left(25 x^{2} + 10 x\right)^{2}}}}

Apply the power rule

\tt \red{\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}  \: with  \: n = 2}

 \tiny \tt \red{\frac{25 \color{red}{\left(\frac{d}{dx} \left(x^{2}\right)\right)} + 10}{\sqrt{1 - \left(25 x^{2} + 10 x\right)^{2}}} = \frac{25 \color{red}{\left(2 x\right)} + 10}{\sqrt{1 - \left(25 x^{2} + 10 x\right)^{2}}}}

Simplify:

 \tiny \tt \red{\frac{50 x + 10}{\sqrt{1 - \left(25 x^{2} + 10 x\right)^{2}}} = \frac{10 \left(5 x + 1\right)}{\sqrt{- 25 x^{2} \left(5 x + 2\right)^{2} + 1}}}

 \tiny \tt \red{Thus, \frac{d}{dx} \left(\operatorname{asin}{\left(25 x^{2} + 10 x \right)}\right) = \frac{10 \left(5 x + 1\right)}{\sqrt{- 25 x^{2} \left(5 x + 2\right)^{2} + 1}}}

Therefore,

 \tt \red{\frac{dy}{dx} = \frac{10 \left(5 x + 1\right)}{\sqrt{- 25 x^{2} \left(5 x + 2\right)^{2} + 1}}}

Answered by mathdude500
17

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg(\dfrac{10x}{1 +  {25x}^{2} } \bigg)

can be rewritten as

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg(\dfrac{2 \times 5x}{1 +  {(5x)}^{2} } \bigg)

Let assume that

\purple{\rm :\longmapsto\:5x = tanz \:  \: \rm\implies \:z =  {tan}^{ - 1}5x}

So, above expression can be rewritten as

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg(\dfrac{2tanz}{1 +  {tan}^{2}z} \bigg)

\rm :\longmapsto\:y =  {sin}^{ - 1}(sin2z)

\rm :\longmapsto\:y = 2z

\rm\implies \:y = 2 {tan}^{ - 1}5x

On differentiating both sides w. r. t. x, we get

\rm\implies \:\dfrac{d}{dx}y = \dfrac{d}{dx}2 {tan}^{ - 1}5x

\rm :\longmapsto\:\dfrac{dy}{dx} =2 \dfrac{d}{dx} {tan}^{ - 1}5x

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} {tan}^{ - 1}x =  \frac{1}{1 +  {x}^{2} } \: }}} \\

So, using this result, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 2 \times \dfrac{1}{1 +  {(5x)}^{2} }\dfrac{d}{dx}5x

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{2}{1 + 25 {x}^{2} } \times 5

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{10}{1 + 25 {x}^{2} }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions