Math, asked by bhavajit8, 1 year ago

if Y= Sin ^-1 √cosx Then Find dy/dx

Answers

Answered by Anonymous
4

we know,

if,

y = sin^-1 (f(x)

then,

dy/dx=[1/[ √1-(f(x))^2 ] ] .f'(X)

so the given eqn is,

y=sin^-1 √cosx

Differentiatie with respect to x

y =  {sin}^{ - 1}  \sqrt{cosx}

 \frac{dy}{dx}  =  \frac{1}{ \sqrt{1 - ( { \sqrt{cosx} )}^{2} } }  \times  \frac{1}{2 \sqrt{cosx} } \\   \times ( - sinx)

= -sinx/[2√cosx. √1-cosx]

Similar questions